-
公开(公告)号:CN117315455B
公开(公告)日:2024-11-08
申请号:CN202310046948.X
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明通过高分辨的遥感影像设计云信息表征指数、自适应阈值分割初步提取云体、几何特征过滤非云对象和提纯云体、设计形态学滤云算子进一步提纯精化,最后通过云体栅格转为矢量并统计云量实现检测,相比于机器学习和深度学习云检测方法对样本数据的依赖,本发明人工参与少、自动化程度高、检测结果具有显著的云团几何形态优势,仅利用云层的亮度和几何形态特征,实现对高分辨率遥感影像自动化精准云检测,检测过程简单,可为高分辨率影像的质量检查、无云影像筛选,以及云覆盖区域的影像补采、填补生成无云影像等生产工序提供支撑,具有较强的泛化性和实用性。
-
公开(公告)号:CN113469052B
公开(公告)日:2022-01-11
申请号:CN202110747982.0
申请日:2021-07-02
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06V10/774 , G06N3/04 , G06N3/08 , G06T7/10
Abstract: 本发明公开了一种基于多尺度特征反卷积的超分辨率建筑物精细识别方法,包括步骤:制作训练样本集;构建包括编码器模块、解码器模块、多尺度特征反卷积模块、特征融合模块与类别判定模块的超分辨率语义分割卷积神经网络;输入所述训练样本集对超分辨率语义分割卷积神经网络进行训练;采用训练后的超分辨率语义分割卷积神经网络对待识别影像进行处理,获得识别结果。其显著效果是:提出了基于多尺度特征反卷积的超分辨率语义分割网络MLSRSS‑Net,综合了编码器的多尺度初级特征反卷积上采样和解码器的高级对象语义特征反卷积上采样,实现了输入为较低空间分辨率的遥感影像,输出为高空间分辨率的建筑物语义图,显著提高了目标提取精度。
-
公开(公告)号:CN113469052A
公开(公告)日:2021-10-01
申请号:CN202110747982.0
申请日:2021-07-02
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了一种基于多尺度特征反卷积的超分辨率建筑物精细识别方法,包括步骤:制作训练样本集;构建包括编码器模块、解码器模块、多尺度特征反卷积模块、特征融合模块与类别判定模块的超分辨率语义分割卷积神经网络;输入所述训练样本集对超分辨率语义分割卷积神经网络进行训练;采用训练后的超分辨率语义分割卷积神经网络对待识别影像进行处理,获得识别结果。其显著效果是:提出了基于多尺度特征反卷积的超分辨率语义分割网络MLSRSS‑Net,综合了编码器的多尺度初级特征反卷积上采样和解码器的高级对象语义特征反卷积上采样,实现了输入为较低空间分辨率的遥感影像,输出为高空间分辨率的建筑物语义图,显著提高了目标提取精度。
-
-