-
公开(公告)号:CN104198962A
公开(公告)日:2014-12-10
申请号:CN201410437744.X
申请日:2014-08-29
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
Abstract: 本发明提供一种超导量子干涉器磁传感器及其中的工作点跳变的识别方法。所述磁传感器包括:超导量子干涉器件;回滞反馈处理单元,用于将超导量子干涉器件所感应的电信号进行回滞反馈处理,使得超导量子干涉器件经回滞反馈处理后所输出的电信号具有周期单值特性;与回滞反馈处理单元相连的磁通锁定单元,用于将回滞反馈处理单元所输出的电信号进行积分处理并反馈至超导量子干涉器件,以输出反馈后的电信号;与回滞反馈处理单元相连的信号识别单元,用于根据回滞反馈处理单元所输出的电信号的周期特性来生成并输出用于识别磁通锁定单元所输出的电信号的工作零点跳变的识别电信号。本发明利用回滞技术来改变超导量子干涉器件所输出的电信号的周期特性,同时,得到具有高精度和线性度的感应电信号。
-
公开(公告)号:CN104198961A
公开(公告)日:2014-12-10
申请号:CN201410344300.1
申请日:2014-07-18
Applicant: 中国科学院上海微系统与信息技术研究所 , 于利希研究中心有限公司
IPC: G01R33/035
CPC classification number: G01R33/0354 , G01R33/035
Abstract: 本发明涉及一种采用单个运算放大器的超导量子干涉器磁传感器,其特征在于使用一个低噪声的运算放大器,以开环的方式对SQUID电压信号进行放大,并由单个运算放大器开环输出直接驱动反馈电阻及反馈线圈。取代了传统磁通锁定环路中的前置放大器和积分器。所述的采用单个运算放大器SQUID磁通锁定环路有正、负端输入接线方式,且正、负端输入接线方式各有三种形式可选。本发明特点是只使用一个运算放大器实现SQUID磁通锁定环路,电路简单。避免了传统电路中积分器的使用,减小环路延时,使磁通锁定环路实现更高的带宽。在SQUID多通道应用中具有重要的意义。
-
公开(公告)号:CN102483444A
公开(公告)日:2012-05-30
申请号:CN200980161327.4
申请日:2009-09-09
Applicant: 于利希研究中心有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
CPC classification number: G01R33/0356
Abstract: 本发明涉及一种SQUID自举电路(SBC),其包括互相耦合的dc-SQUID和反馈线圈。SQUID和线圈串联连接。反馈线圈可以由超导体或常规金属制成,也可以集成在SQUID芯片上,或邻近SQUID分开地布置。SQUID和线圈一起形成新型的称为SBC的双端子器件。本发明集合了APF和NC的优势,避免了其缺陷。有了这种新设计,SQUID的电流-Ф或电压-Ф特性将是非对称性的,且等效动态电阻也将改变。
-
公开(公告)号:CN102426342A
公开(公告)日:2012-04-25
申请号:CN201110254078.2
申请日:2011-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
Abstract: 本发明公布了一种基于三端变压器的SQUID前端电路与其调整方法。三端变压器由绕制在同一个磁环上的三组线圈构成,三端变压器原边(1)和(2)用于实现SQUID磁通信号传输和方波偏置波形的补偿,副边主要用于信号输出;通过在SQUID并联支路加入合成波形,可实现SQUID偏置为理想的方波偏置电流,并可借助补偿支路对输入前置放大器的偏置载波进行补偿。本发明还提供了前端电路的调整方法,主要思路是采用低频调节-高频使用,包括偏置电流调整与工作点测定、合成波形调整、波形补偿和高频微调步骤。
-
公开(公告)号:CN102353911A
公开(公告)日:2012-02-15
申请号:CN201110254095.6
申请日:2011-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035 , G01R15/00
Abstract: 一种基于扰动补偿的环境场下高灵敏度磁测量装置及实现方法,该方法包括:由第二积分器、低通滤波器、第二反馈电阻和反馈线圈构成的第二反馈支路和基于该支路形成的第二磁通锁定环路,实现环境磁场低频扰动补偿。基于该方法构建的超导磁传感器可同时实现对环境场的高通响应频率特性和对电路噪声的低通响应频率特性,保证在不影响微弱信号测量的前提条件下,抑制环境场扰动对SQUID磁测量的影响,避免溢出现象发生。该方法基于超导磁传感器,适用于待测磁场信号频率高于环境场扰动频段(直流-30Hz)的应用环境。
-
公开(公告)号:CN101923153A
公开(公告)日:2010-12-22
申请号:CN201010212981.8
申请日:2010-06-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R35/00
Abstract: 本发明公开了一种多通道SQUID生物磁系统标定方法,是一种室温和低温相联合的标定方法。通过室温标定确定梯度计的等效误差面积,在低温下使用Helmholtz线圈产生均匀的磁场,利用系统输出的对应电压信号和测量的误差面积,进行系统磁场电压系数的标定。本发明包括以下步骤:(1)梯度计等效误差面积室温标定;(2)SQUID生物磁系统安装;(3)Helmholtz线圈低温标定。本方法的特点是利用室温和低温等效误差面积的一致性进行系统的标定,其优势是避免了单一低温线圈标定带来的空间定位精度和计算问题,操作简单,多通道同时标定,一致性好。
-
公开(公告)号:CN108539004B
公开(公告)日:2023-12-05
申请号:CN201810375704.5
申请日:2018-04-25
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种亚微米约瑟夫森隧道结及其制备方法,包括如下步骤:1)提供一衬底,并于衬底的上表面形成底层超导薄膜层、绝缘薄膜层及顶层超导薄膜层;2)刻蚀去除部分顶层超导薄膜层、部分绝缘薄膜层及部分底层超导薄膜层;3)于步骤2)所得到结构的表面形成一第一绝缘层;4)于步骤3)所得到结构的表面形成第二绝缘层;5)于步骤4)所述得到结构的表面形成附加超导薄膜层,并刻蚀附加超导薄膜层以形成第二亚微米线条,第二亚微米线条至少与第一亚微米线条呈十字交叉连接。本发明可以有效解决现有技术中存在的电极窗口问题;双层绝缘层不仅改善了边缘效应、降低了台阶过渡处漏电流的产生,还有利于提高约瑟夫森结的质量及可靠性。(56)对比文件张雪;张国峰;金华;刘晓宇;王镇.超导Nb薄膜的RIE刻蚀与表征.低温物理学报.2016,(第04期),余铁军,张雪霞,高保新,吴培亨.超导Fresnel公式及其应用.低温物理学报.1996,(第02期),
-
公开(公告)号:CN114553210B
公开(公告)日:2023-09-08
申请号:CN202210168023.8
申请日:2022-02-23
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H03K19/0175 , H03K19/195 , G01R31/3177
Abstract: 本发明提供一种超导电路与CMOS电路之间的跨温区互联系统、超导测试电路,超导测试电路包括CMOS电路与跨温区互联系统;跨温区互联系统包括衰减模块、放大模块和传输线链路;所述衰减模块的输入端用于连接CMOS电路,所述衰减模块的输出端用于连接所述超导电路;所述衰减模块用于将CMOS电路的CMOS逻辑电平转化处理为超导逻辑电平;所述放大模块的输入端用于连接所述超导电路,所述衰减模块的输出端用于连接所述CMOS电路;所述放大模块用于将超导电路的超导逻辑电平转化处理为CMOS逻辑电平;所述传输线链路用于实现超导电路与CMOS电路之间跨温区的信号传输。本发明能保证测试中超导芯片的高速、动态功能实现。
-
公开(公告)号:CN114553210A
公开(公告)日:2022-05-27
申请号:CN202210168023.8
申请日:2022-02-23
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H03K19/0175 , H03K19/195 , G01R31/3177
Abstract: 本发明提供一种超导电路与CMOS电路之间的跨温区互联系统、超导测试电路,超导测试电路包括CMOS电路与跨温区互联系统;跨温区互联系统包括衰减模块、放大模块和传输线链路;所述衰减模块的输入端用于连接CMOS电路,所述衰减模块的输出端用于连接所述超导电路;所述衰减模块用于将CMOS电路的CMOS逻辑电平转化处理为超导逻辑电平;所述放大模块的输入端用于连接所述超导电路,所述衰减模块的输出端用于连接所述CMOS电路;所述放大模块用于将超导电路的超导逻辑电平转化处理为CMOS逻辑电平;所述传输线链路用于实现超导电路与CMOS电路之间跨温区的信号传输。本发明能保证测试中超导芯片的高速、动态功能实现。
-
公开(公告)号:CN109298357A
公开(公告)日:2019-02-01
申请号:CN201811041108.X
申请日:2018-09-07
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
Abstract: 本发明提供一种基于SQUID三轴磁强计的矢量磁场稳定系统,包括:设置于三轴补偿线圈中,用于探测三个轴向磁场的SQUID三轴磁强计;读出SQUID三轴磁强计检测到信号的SQUID读出模块;将SQUID三轴磁强计的检测信号反馈到相应的三轴补偿线圈中的反馈模块;产生与环境磁场波动相反的补偿磁场的三轴补偿线圈;其中,SQUID三轴磁强计与三轴补偿线圈的三个轴向对应设置。本发明使用SQUID三轴模块作为磁探测器进行磁场稳场,可以获得更全面(总场和各矢量场)的磁场稳定效果,灵敏度高,带宽大;可应用于地球磁场或零磁场环境下,适用磁场范围更大。
-
-
-
-
-
-
-
-
-