基于旋转质量体解调的加速度计高精度标定装置及方法

    公开(公告)号:CN115616247A

    公开(公告)日:2023-01-17

    申请号:CN202211123509.6

    申请日:2022-09-15

    Abstract: 本发明公开了一种基于旋转质量体调制解调的加速度计高精度标定装置及方法。本发明将产生的引力加速度作为信号源,标定加速度计的标度因数。将质量体绕一定轴旋转,使得引力加速度被调制而周期性变化,再利用旋转角度信号对加速度计输出信号进行解调,以提高标定精度。本发明可以在输入加速度幅度在pg量级至ng量级之间的条件下标定加速度的标定因数,以满足地面上级高探测灵敏度加速度计的测试要求。本发明只要求加速度计和质量体相对旋转,并不对加速度计本身如何运动加以限制,且产生的引力加速度幅度微弱,因此适用于量程较小或要求原位、在线测量的场合。本发明通过旋转质量体解调,提供了一种原位、在线、高精度的加速度标定装置和方法。

    一种基于悬浮纳米微粒的真空光镊实验教学装置

    公开(公告)号:CN115223430B

    公开(公告)日:2022-12-16

    申请号:CN202211138122.8

    申请日:2022-09-19

    Abstract: 本发明公开一种基于悬浮纳米微粒的真空光镊实验教学装置,该装置包括捕获光路模块、真空系统模块、探测光路模块、信号处理及采集模块、电场电极模块、算法显示模块、摄像模块。该装置可以实现在常压下实现悬浮纳米微粒的稳定捕获及观测,可调节微粒所处的气压状态,实现微粒的电场调控,实现悬浮纳米微粒的高时空信号探测,实时采集及处理显示悬浮纳米微粒的各项参数,能够可满足不同层次的实验操作者进行实验调试、实验验证、数据采集。同时,该装置集成度高、便于移动,光路直观,操作便捷,系统集成度高、可拓展性强。实验内容超前新颖,满足真空光镊实验教学及科研的需求。

    一种基于悬浮纳米微粒的真空光镊实验教学装置

    公开(公告)号:CN115223430A

    公开(公告)日:2022-10-21

    申请号:CN202211138122.8

    申请日:2022-09-19

    Abstract: 本发明公开一种基于悬浮纳米微粒的真空光镊实验教学装置,该装置包括捕获光路模块、真空系统模块、探测光路模块、信号处理及采集模块、电场电极模块、算法显示模块、摄像模块。该装置可以实现在常压下实现悬浮纳米微粒的稳定捕获及观测,可调节微粒所处的气压状态,实现微粒的电场调控,实现悬浮纳米微粒的高时空信号探测,实时采集及处理显示悬浮纳米微粒的各项参数,能够可满足不同层次的实验操作者进行实验调试、实验验证、数据采集。同时,该装置集成度高、便于移动,光路直观,操作便捷,系统集成度高、可拓展性强。实验内容超前新颖,满足真空光镊实验教学及科研的需求。

    引力加速度调制装置及方法

    公开(公告)号:CN115079737A

    公开(公告)日:2022-09-20

    申请号:CN202210860338.9

    申请日:2022-07-22

    Abstract: 本发明公开了一种引力加速度调制装置及方法。引力加速度调制装置,包括微粒、调制模块、真空模块、捕获模块、探测模块;调制模块包括顺次相连的飞轮、旋转轴、联轴器、减速器、电机、三轴精密位移台、电机支座;其中电机通过减速器和联轴器带动飞轮周期性的相对位置运动,实现对力或加速度调制;真空模块用于提供超高真空环境;捕获模块利用磁场、光场或电场捕获微粒;探测模块用于探测微粒的运动信息;调制模块、捕获模块整体安装在真空模块内。本发明利用万有引力定力定律,免去质量误差带来的影响,设计了飞轮结构,可实现微粒信号的二倍频调制,避免了电机本身固有频率噪声的影响,实现对引力加速度标定,可应用在量子传感、精密测量等领域。

    一种加热悬浮纳米微粒的红外光学系统

    公开(公告)号:CN114205929B

    公开(公告)日:2022-08-05

    申请号:CN202210137958.X

    申请日:2022-02-15

    Abstract: 本发明公开了一种加热悬浮纳米微粒的红外光学系统,包括激光器、第一反射镜、第二反射镜、第三反射镜、第四反射镜、第一红外光学窗口、真空腔、捕获物镜、第一非球面红外透镜、纳米微粒、第二非球面红外透镜、第二红外光学窗口、光学垃圾桶;激光器发出的准直的远红外光沿光轴方向进入激光扩束系统,经激光扩束系统扩束准直后再被反射,并透射通过第一红外光学窗口进入真空腔,后经过第一非球面红外透镜聚焦;悬浮纳米微粒被捕获光束束缚在捕获物镜的焦点位置处。本发明可以实现悬浮纳米微粒进行原位热脱附,消除粒子表面及内部杂质,提高微粒的耐高真空悬浮概率,免了其它加热手段可能导致粒子烧结难以分撒、粒子结构破损等问题。

    可伸缩式吸气剂泵抽真空装置及应用方法

    公开(公告)号:CN114753991A

    公开(公告)日:2022-07-15

    申请号:CN202210679130.7

    申请日:2022-06-16

    Abstract: 本发明公开了一种可伸缩式吸气剂泵抽真空装置及应用方法。装置包括机械泵、分子泵、实验平台、离子泵、伸缩式吸气剂泵结构、真空规、真空腔、金属角阀、小抽气管、分子泵卡箍、大抽气管、大抽气管卡箍、硬管支撑、电动阀、硬管、硬弯管、离子泵支撑、离子泵角阀、支撑柱、离子泵直通管。其中伸缩式吸气剂泵结构由短直通管、螺钉、插板阀、伸缩管、直线导轨、调节架、手轮、手摇杆、右支架、定位块、左支架、吸气剂泵、左支架支撑、右支架支撑、调节丝杠等组成。利用伸缩式吸气剂泵结构,带动吸气泵剂整体移动,吸气剂泵远离或靠近真空腔,可适用经常破空的实验环境系统,可应用在量子传感、生物、化工、环境监测等需要抽超高真空领域。

    一种精准调控微粒净电量的方法及装置

    公开(公告)号:CN114189172B

    公开(公告)日:2022-05-24

    申请号:CN202210137538.1

    申请日:2022-02-15

    Abstract: 本发明公开了一种精准调控微粒净电量的方法及装置。所述的方法,步骤如下:1)悬浮待调节微粒;2)在待调节微粒周围产生自由电荷;3)在待调节微粒周围产生加速电场,定向地控制自由电荷的移动;3.1)电荷正负性的调控:通过调节加速电场的方向,调控吸附至待调节微粒的自由电荷的正负性;3.2)电荷量的调控:通过设置电荷屏蔽罩,控制吸附到待调节微粒上的自由电荷的数量。所述的装置,包括电荷屏蔽罩、针尖电极、平板电极、支撑结构。本发明可精确地调控微粒携带的电荷量及其正负性,为在微纳尺度控制微粒的运动、提升真空光镊系统的力学灵敏度提供可能的解决方案。另外,可应用在静电除尘、静电复印、静电透镜等领域。

    一种微粒光散射谱分析装置及其应用方法

    公开(公告)号:CN114414552A

    公开(公告)日:2022-04-29

    申请号:CN202210310174.2

    申请日:2022-03-28

    Abstract: 本发明公开一种微粒光散射谱分析装置及其应用方法。该装置通过双光束光镊系统形成捕获光阱实现对微粒的快速稳定捕获,利用在捕获光的垂轴方向放置散射光收集系统和光谱仪,实现光悬浮微粒侧向散射光的收集和利用。本发明还提供了一种利用该装置搭建的双光束光镊系统进行微粒光散射谱分析的方法,通过集成的光谱处理系统最大化利用收集的侧向散射光,精度和灵敏度与传统技术相比有很大提高。避免了分光引起的散射光浪费,可捕获微粒尺寸范围更大,且需要的捕获光强减弱,避免由于微粒吸热过多引起物性变化导致的测量错误,为微纳尺寸微粒的精密测量提供了方法与手段。

    一种精准调控微粒净电量的方法及装置

    公开(公告)号:CN114189172A

    公开(公告)日:2022-03-15

    申请号:CN202210137538.1

    申请日:2022-02-15

    Abstract: 本发明公开了一种精准调控微粒净电量的方法及装置。所述的方法,步骤如下:1)悬浮待调节微粒;2)在待调节微粒周围产生自由电荷;3)在待调节微粒周围产生加速电场,定向地控制自由电荷的移动;3.1)电荷正负性的调控:通过调节加速电场的方向,调控吸附至待调节微粒的自由电荷的正负性;3.2)电荷量的调控:通过设置电荷屏蔽罩,控制吸附到待调节微粒上的自由电荷的数量。所述的装置,包括电荷屏蔽罩、针尖电极、平板电极、支撑结构。本发明可精确地调控微粒携带的电荷量及其正负性,为在微纳尺度控制微粒的运动、提升真空光镊系统的力学灵敏度提供可能的解决方案。另外,可应用在静电除尘、静电复印、静电透镜等领域。

    通过预加热脱附增强光悬浮微粒真空耐受度的方法与装置

    公开(公告)号:CN113533173B

    公开(公告)日:2021-12-21

    申请号:CN202111094692.7

    申请日:2021-09-17

    Abstract: 本发明公开通过预加热脱附增强光悬浮微粒真空耐受度的方法与装置。方法包括以下几个步骤:首先开启捕获激光,形成捕获光阱,将微粒投送到光阱所在区域,实现微粒的捕获,并通过光电探测器收集被捕获微粒的散射光信号;打开预加热激光器,调整预加热激光器光束对准被捕获的微粒;调节预加热激光器功率至微粒加热速率大于散热速率,使得微粒内部温度升高,实现预加热;打开真空泵,将真空度抽至大于光阱有效捕获区域第一次缩小的真空拐点时,停止抽真空;光电探测器收集的微球散射光信号不再发生变化时关闭预加热激光器。本发明可以提高微粒在高真空环境下的稳定捕获概率,推动真空光镊技术的应用,同时也为微纳尺寸微粒的物性研究提供方法与手段。

Patent Agency Ranking