一种SPECT三维重建图像到标准视图的自动转向方法

    公开(公告)号:CN111862320B

    公开(公告)日:2020-12-11

    申请号:CN202010993876.6

    申请日:2020-09-21

    Abstract: 本发明公开了一种SPECT三维重建图像到标准视图的自动转向方法,通过利用刚性配准算法提取SPECT三维重建图像A和标准SPECT图像R之间的刚性配准参数P形成A与P的映射数据库,利用3层卷积模块对图像A进行特征提取,并经过三次全连接转换为6维的特征向量T,经过空间变换网络应用T于A上形成网络预测的转向结果训练从而建立SPECT三维重建图像自动转向模型。将待转向SPECT三维重建图像作为输入,利用SPECT三维重建图像自动转向模型进行自动转向即可获得标准视图。本发明使用网络提取图像位置特征,形成不同角度视图到标准视图的全自动转向,减少了手动转向操作的复杂性,提高了图像操作的便捷性。

    基于多任务学习约束的PET图像感兴趣区域增强重建方法

    公开(公告)号:CN113256753B

    公开(公告)日:2021-10-29

    申请号:CN202110732417.7

    申请日:2021-06-30

    Abstract: 本发明公开了一种基于多任务学习约束的PET图像感兴趣区域增强重建方法,该方法先获取PET原始数据在图像域的反投影图像,设计重建主任务为利用三维深度卷积神经网络建立反投影图像与PET重建图像之间的映射。设计新增辅助任务一从反投影图像中预测与PET重建图像具有相同解剖结构的电子计算机断层扫描(CT)图像,从而利用高分辨率CT图像的局部平滑信息降低PET重建图像中的噪声。设计新增任务二实现区分反投影图像中的感兴趣区域与背景区域,在重建过程中对感兴趣区域进行增强重建,降低感兴趣区域由平滑导致的定量误差,提高PET重建精度。

Patent Agency Ranking