-
公开(公告)号:CN108134063B
公开(公告)日:2019-11-22
申请号:CN201711396791.4
申请日:2017-12-21
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明涉及一种硅碳复合材料的制备方法,包括步骤:(1)采用化学沉淀法,以非均质形核方式制备Bernalite氢氧化铁包覆纳米硅的双层结构材料;(2)将双层结构材料与酚醛树脂的乙醇溶液混合,蒸干、并经高温烧结处理得到由外至内依次为无定型碳‑Bernalite氢氧化铁‑纳米硅的三层包覆结构颗粒;(3)将无定型碳‑Bernalite氢氧化铁‑纳米硅的三层包覆结构颗粒在酸液中处理,去除中间层的Bernalite氢氧化铁,得三维层片花瓣状多孔无定型碳包覆纳米硅的复合结构材料。所述硅碳复合材料用作电池负极材料,具有优异的电化学性能,比容量循环性能有非常显著的改善,材料的三维层片花瓣状的多孔结构可大幅增加材料的比表面和导电性,增强材料的强度和韧性,有效缓解硅负极材料的膨胀问题。
-
公开(公告)号:CN106356548B
公开(公告)日:2019-05-10
申请号:CN201611065033.X
申请日:2016-11-28
Applicant: 哈尔滨工业大学深圳研究生院
IPC: H01M8/1088 , H01M8/1041 , H01M8/1011
Abstract: 本发明涉及一种用于直接甲醇燃料电池的质子交换膜的改性方法,涉及燃料电池技术领域。其包括以下步骤:通过水热合成法制备亚微米级Na‑X型沸石;对亚微米级Na‑X型沸石进行离子交换处理,得到NH4‑X型沸石;将NH4‑X型沸石在高温下煅烧,制备沸石次级结构材料;将沸石次级结构材料用改进溶液重塑法制备复合质子交换膜。采用该方法制备的复合质子交换膜的吸水性能、离子交换容量、质子导电率和甲醇渗透率等都有明显改善,尤其是复合质子交换膜的甲醇渗透率下降了一半多,质子电导率提高到了未改性质子交换膜的3倍,组装电池80℃测试发现,功率密度是未改性质子交换膜的2倍多。另外,沸石次级结构材料具有高温稳定性和耐酸性,可在高温和酸性环境下长期工作。
-
公开(公告)号:CN106784917B
公开(公告)日:2019-03-19
申请号:CN201611169166.1
申请日:2016-12-16
Applicant: 哈尔滨工业大学深圳研究生院
IPC: H01M8/0243 , H01M8/18
Abstract: 本发明涉及一种用于全钒液流电池的质子交换膜的改性方法,涉及电池技术领域。其包括以下步骤:S1、亚微米级ZSM‑5型沸石的制备:将去离子水、四丙基氢氧化铵、硅酸、偏铝酸钠混合均匀,混合液采用水热合成法,之后经离心清洗、干燥,制备出亚微米级ZSM‑5型沸石;S2、复合质子交换膜的制备:采用所述步骤S1的亚微米级ZSM‑5型沸石和质子交换膜溶液制备出复合质子交换膜。采用本发明改性方法制备的复合质子交换膜的吸水性、离子交换容量、质子导电性、钒离子渗透率等性能均优于未改性的质子交换膜。相比于未改性的质子交换膜,复合质子交换膜的钒离子渗透率下降了11%,质子电导率提高了20%。
-
-
公开(公告)号:CN107017403A
公开(公告)日:2017-08-04
申请号:CN201710421964.7
申请日:2017-06-07
Applicant: 东莞市迈科新能源有限公司 , 哈尔滨工业大学深圳研究生院 , 东莞市迈科科技有限公司 , 东莞市迈科锂离子电池工业节能技术研究院
IPC: H01M4/36 , H01M4/583 , H01M4/62 , H01M4/38 , H01M10/0525
CPC classification number: H01M4/366 , H01M4/38 , H01M4/583 , H01M4/625 , H01M10/0525
Abstract: 本发明属于电池技术领域,尤其涉及一种电池负极材料,所述负极材料具有核壳结构,其中核结构为SnSexS1‑x,其中,0<x<1,壳结构为碳。相对于现有技术,SnSexS1‑x具有良好的电化学性能,比如,其储锂性能优异,但是其在循环过程中体积变化较大,大的体积变化会引起电极材料的粉化、崩裂而失效,导致循环性能变差,碳包覆则可以对SnSexS1‑x进行约束,减小其体积变化,提高其循环性能,使得SnSexS1‑x能够应用锂离子电池和钠离子电池。此外,本发明还公开了该负极材料的制备方法以及其应用。
-
公开(公告)号:CN106711484A
公开(公告)日:2017-05-24
申请号:CN201611168661.0
申请日:2016-12-16
Applicant: 哈尔滨工业大学深圳研究生院
IPC: H01M8/1088 , H01M8/1048 , H01M8/18
CPC classification number: Y02E60/528 , H01M8/1088 , H01M8/1048 , H01M8/188
Abstract: 本发明涉及一种用于全钒液流电池的质子交换膜的改性方法,涉及电池技术领域。其包括以下步骤:S1、Na‑A型沸石的制备:以硅酸钠和氢氧化铝分别作为制备Na‑A型沸石的硅源和铝源,采用水热合成法制备Na‑A型沸石;S2、NH4‑A型沸石的制备:对Na‑A型沸石进行离子交换处理,得到NH4‑A型沸石;S3、H‑A型沸石的制备:对NH4‑A型沸石采用水蒸气加热法制备H‑A型沸石;S4、SPEEK原料的制备:通过后磺化法制备SPEEK原料;S5、SPEEK复合膜的制备:将H‑A型沸石掺杂到SPEEK原料中,制备出SPEEK复合膜。本发明的改性方法简单可靠,可操作性强,采用该方法制备的SPEEK复合膜分布均匀,质子导电性、钒离子渗透率和选择性等性能更优异。
-
公开(公告)号:CN104681791B
公开(公告)日:2017-03-01
申请号:CN201510132550.3
申请日:2015-03-25
Applicant: 东莞市迈科科技有限公司 , 哈尔滨工业大学深圳研究生院 , 东莞市迈科新能源有限公司
IPC: H01M4/1397
Abstract: 本发明涉及锂离子电池技术领域,具体涉及一种锂离子电池负极材料的制备方法,包括如下步骤:A、铜锡合金的合成:A1、硼氢化钠和柠檬酸铵配成混合溶液,得到溶液A;A2、向溶液A中加入铜粉,搅拌均匀,得到溶液B;A3、向溶液B中加入氯化锡溶液,反应得到沉淀,将沉淀过滤,洗涤干燥,得到铜锡合金;B、负极材料的合成:B1、取铜锡合金和硫粉混合,得到混合物;B2、将混合物在氮气保护下加热进行反应,得到负极材料。本发明的制备方法工艺简单,操作控制方便,质量稳定,安全可靠,可大规模工业化生产。
-
公开(公告)号:CN105552345A
公开(公告)日:2016-05-04
申请号:CN201610104239.2
申请日:2016-02-25
Applicant: 东莞市迈科科技有限公司 , 哈尔滨工业大学深圳研究生院 , 东莞市迈科新能源有限公司
Abstract: 本发明涉及锂离子电池技术领域,尤其涉及一种用于锂硫电池的硫碳复合物,包括碳纳米颗粒、加载于所述碳纳米颗粒中的硫和残留于所述碳纳米颗粒中的二氧化硅模板剂,其中按质量百分数计,所述硫含量为所述硫碳复合物的40%~70%,所述二氧化硅模板剂占所述硫碳复合物的0.3%~3%;本发明硫碳复合物中残留的二氧化硅模板剂分散于碳纳米颗粒中,以减小碳纳米颗粒的孔径,这样在使用时,碳纳米颗粒对电化学反应中间产物多硫化锂具有更强的捕获能力,同时残留的二氧化硅模板剂还可以有效阻止多硫化锂的“飞梭效应”;本发明还涉及该硫碳复合物的制备方法及包含有该硫碳复合物的电极材料和锂硫电池。
-
公开(公告)号:CN104934578A
公开(公告)日:2015-09-23
申请号:CN201510261781.4
申请日:2015-05-21
Applicant: 东莞市迈科新能源有限公司 , 哈尔滨工业大学深圳研究生院 , 东莞市迈科科技有限公司
IPC: H01M4/36 , H01M10/0525
CPC classification number: H01M4/364 , H01M10/0525
Abstract: 本发明涉及锂离子电池负极材料技术领域,具体涉及一种锂离子电池用高硅沸石和石墨烯复合负极材料及其制备方法,该制备方法包括如下步骤:A、高硅沸石的制备:取去离子水加入到四丙基氢氧化铵中搅拌均匀,后加入硅酸,搅拌,转移到特氟龙内衬杯内,晶化,离心洗涤,干燥,得到高硅沸石;B、高硅沸石和石墨烯复合负极材料的制备:取高硅沸石溶于去离子水,超声分散;取石墨烯,超声分散于去离子水中;两种溶液复合后超声分散均匀,冷冻干燥,置于还原性气体中煅烧,冷却后制得高硅沸石和石墨烯复合负极材料。本发明的制备方法可以得到复合非常均匀的高硅沸石和石墨烯复合负极材料,工艺简单,成本低廉,对环境污染小,适合大规模工业生产。
-
公开(公告)号:CN104659338A
公开(公告)日:2015-05-27
申请号:CN201510116593.2
申请日:2015-03-17
Applicant: 东莞市迈科科技有限公司 , 哈尔滨工业大学深圳研究生院 , 东莞市迈科新能源有限公司
IPC: H01M4/1397
Abstract: 本发明属于锂硫电池技术领域,尤其涉及一种锂硫电池正极材料的制备方法,包括以下步骤:将碳纳米管加入到质量浓度不低于10%的氮源物质溶液中,混合均匀后,转移至水热/溶剂热反应釜中保温,冷却后,对反应产物进行洗涤和干燥,得到氮化碳纳米管;将硫溶解于有机溶剂,得到含硫有机溶液,然后将步骤一得到的氮化碳纳米管加入到含硫有机溶液中,超声分散0.5h以上,继续超声,然后边超声边滴加萃取剂,其中,萃取剂与有机溶剂的质量比为(0.5~10):1;然后干燥,待溶剂挥发一半以上,对产物进行冷冻干燥。相对于现有技术,采用本发明的方法获得的碳-硫复合物具有良好的循环稳定性。
-
-
-
-
-
-
-
-
-