一种基于光纤集成的可调谐高效倍频器件及其制备方法

    公开(公告)号:CN115877631A

    公开(公告)日:2023-03-31

    申请号:CN202211532604.1

    申请日:2022-12-01

    Applicant: 暨南大学

    Abstract: 本发明涉及非线性光学领域,具体涉及一种基于光纤集成的可调谐高效倍频器件及其制备方法。包括:衬底、叉指电极、二阶非线性光学材料和微纳光纤;所述叉指电极设置在衬底上表面,所述二阶非线性光学材料覆盖在叉指电极上表面,所述微纳光纤具有双锥形结构,所述双锥形结构区域紧贴于所述二阶非线性光学材料。本发明将具有良好二阶非线性光学系数的材料覆盖在叉指电极上,微纳光纤与材料耦合激发二阶非线性的同时满足准相位匹配以及局域场增强,实现高效的倍频转换过程,同时可以通过改变微纳光纤的直径、叉指电极的周期、微纳光纤与叉指电极的夹角以及基频光波长来实现准相位匹配。

    一种全光纤电光调制器及制备方法

    公开(公告)号:CN114935837A

    公开(公告)日:2022-08-23

    申请号:CN202210579925.0

    申请日:2022-05-25

    Applicant: 暨南大学

    Abstract: 本申请公开了一种全光纤电光调制器及制备方法,涉及光电子器件领域。所述全光纤电光调制器包括:单模‑锥形双模‑单模结构光纤,所述单模‑锥形双模‑单模结构光纤为双模光纤区域拉锥为锥形双模光纤的单模‑双模‑单模结构光纤;ITO导电玻璃电极,所述ITO导电玻璃为顶层ITO导电玻璃电极和底层ITO导电玻璃电极;所述ITO导电玻璃电极用于连接外部调制电压;聚酰亚胺垫片,所述聚酰亚胺垫片固定在所述底层ITO导电玻璃的两端;有机电光聚合物薄膜,所述有机电光聚合物薄膜旋涂于所述底层ITO导电玻璃,所述单模‑锥形双模‑单模结构光纤置于极化后的所述有机电光聚合物薄膜的表面。

    一种利用真空能量涨落的真空空间推进器及推进方法

    公开(公告)号:CN114516429A

    公开(公告)日:2022-05-20

    申请号:CN202210167272.5

    申请日:2022-02-23

    Applicant: 暨南大学

    Abstract: 本发明公开了一种利用真空能量涨落的真空空间推进器及推进方法,其中推进器包括推进系统、控制系统以及供电系统,所述供电系统对所述推进系统以及控制系统进行供电;所述推进系统包括旋转电机以及连接于所述旋转电机上的若干扇叶,所述扇叶表面设置有若干手性粒子,所述若干手性粒子在所述扇叶表面呈阵列分布,所述旋转电机用于带动所述扇叶以及所述手性粒子绕旋转轴高速旋转,以使所述手性粒子与真空中的热和真空能量涨落相互作用,产生驱动力。本发明利用真空零点能辅助来驱动空间推进器,解决了传统空间推进器需要携带大量工质,从而导致的发射成本高、服役寿命短以及工作空间范围受限等问题。

    一种集成光纤的全光纤波长选择调制器与探测器

    公开(公告)号:CN110376767A

    公开(公告)日:2019-10-25

    申请号:CN201910496256.9

    申请日:2019-06-10

    Applicant: 暨南大学

    Abstract: 一种集成光纤的全光纤波长选择调制器与探测器,包括玻璃衬底,所述玻璃衬底上侧设置有去芯侧边抛磨光纤,所述去芯侧边抛磨光纤平坦区两侧设置有金属电极,所述去芯侧边抛磨光纤平坦区及所述金属电极上侧覆盖设置有石墨烯薄膜,所述石墨烯薄膜上层设置有聚甲基丙烯酸甲酯薄膜,本发明通过改变施加在两个金属电极两端的驱动电压,调控带有聚甲基丙烯酸甲酯薄膜的石墨烯薄膜对光纤中传输光强的吸收,从而实现波长选择的电光调制、光电探测等功能,结合了石墨烯薄膜与去芯侧边抛磨光纤波导结构,实现插入损耗低、波长选择调制、多功能化、结构简单等优点。

    一种光纤传感头和其制备方法及其磷脂酶光纤传感器

    公开(公告)号:CN108303123A

    公开(公告)日:2018-07-20

    申请号:CN201810045758.5

    申请日:2018-01-17

    Applicant: 暨南大学

    Abstract: 本发明涉及传感器领域,更具体地,涉及一种光纤传感头和其制备方法及其磷脂酶光纤传感器。光纤传感头包括经过锚定处理的侧边抛磨光纤,侧边抛磨光纤封装在玻璃基底上,其抛磨区表面朝上,侧边抛磨光纤的抛磨区涂覆有向列相液晶薄膜,向列相液晶薄膜上吸附有磷脂。本申请将液晶作为敏感材料涂覆到SPF上,构成基于液晶光学放大的光纤传感器件,并用于生物分子磷脂酶的检测,可弥补传统的利用向列相液晶取向变化实现磷脂酶传感的缺陷。

    一种基于去芯侧边抛磨光纤的折射率监测装置及方法

    公开(公告)号:CN107064063A

    公开(公告)日:2017-08-18

    申请号:CN201610508388.5

    申请日:2016-06-28

    Applicant: 暨南大学

    CPC classification number: G01N21/45 G01N2021/458

    Abstract: 本发明公开一种基于去芯侧边抛磨光纤的折射率监测装置及方法,该装置包括通过单模通信光纤依次连接的宽谱光源、去芯侧边抛磨光纤和光频谱分析仪,所述去芯侧边抛磨光纤的抛磨区由单模通信光纤经侧边抛磨而成,依次包括第一纤芯完整区、第一抛磨过渡区、抛磨平坦区、第二抛磨过渡区和第二纤芯完整区,所述抛磨过渡区是将单模通信光纤的光纤纤芯部分抛磨掉形成的,所述抛磨平坦区是将单模通信光纤的光纤纤芯全部抛磨掉形成的,将去芯侧边抛磨光纤作为传感头浸入待测介质中,宽谱光源发出的信号光经过单模通信光纤后入射去芯侧边抛磨光纤中,发生多模干涉。

    一种光子晶体光纤方位角的确定方法

    公开(公告)号:CN104197863A

    公开(公告)日:2014-12-10

    申请号:CN201410380952.0

    申请日:2014-08-05

    Applicant: 暨南大学

    Abstract: 本发明公开了一种光子晶体光纤方位角的确定方法,用激光垂直照射在光子晶体光纤的侧面并在前方的成像屏上成像,用数码相机拍摄散射条纹图案,其特征在于:对散射条纹图案的处理方式为:将散射条纹图案分割成上下两个区域,两个区域光强度之和分别为第一特征值和第二特征值,逐步旋转光子晶体光纤,得到与旋转角度一一对应的第一特征值组和第二特征值组,求得第一旋转角度极值组及第二旋转角度极值组,并分别从中选出第一角度θ1及第二角度θ2,该两角度差值的绝对值小于20°,光子晶体光纤ГК方位角θГК由公式θГК=(θ1+θ2)/2确定。本发明可用于光子晶体光纤器件的制作加工过程,具有重要的应用前景。

Patent Agency Ranking