长空气间隙放电通道温度场测量系统及识别方法

    公开(公告)号:CN111122002B

    公开(公告)日:2022-04-08

    申请号:CN201911395109.9

    申请日:2019-12-30

    IPC分类号: G01K7/40

    摘要: 本发明公开一种长空气间隙放电通道温度场测量系统,包括背景幕布,由半透明材质打印而成,分布有随机斑点,作为高速相机的观测对象;射灯,与长间隙电极分别位于背景幕布的两侧,用于提供光源,使背景幕布成像于高速相机;长间隙电极,位于长空气间隙内,用于放电击穿长空气间隙;高速相机,与长间隙电极位于背景幕布的同侧,与数据处理器相连,用于接收来自背景斑点、穿过长空气间隙的光线,并成像后发送至数据处理器;数据处理器,用于接收并存储高速相机拍摄的图像,并进行温度场反演。本发明能够改进现有技术的不足,简化了测量流程,可以快速、精确的获得大尺寸放电通道的温度分布特性。

    一种兆瓦级电池储能电站的监控系统及其方法

    公开(公告)号:CN103560532B

    公开(公告)日:2015-09-09

    申请号:CN201210091324.1

    申请日:2012-03-30

    IPC分类号: H02J3/32

    摘要: 本发明提出一种兆瓦级电池储能电站的监控系统及其方法,系统包括中央监控模块和本地监控模块,两模块之间采用实时通信网络和非实时监测通信网络并行的通信网络结构进行通信与连接。方法包括以下步骤:通过通信网络读取电池储能电站的相关数据,并进行存储和管理;确定电池储能电站总功率需求;确定各储能子站的功率命令值,并下发给各本地监控模块;计算出储能子站中各储能机组的功率命令值,并下发给各储能机组;将本地监控模块中各储能机组的功率命令值、实时数据和非实时数据上传至中央监控模块统一存储和管理。该系统和方法能满足对储能机组集群式实时快速控制和大量传输数据的监测要求,保障了电池健康运行,使储能电站更安全稳定。

    一种兆瓦级电池储能电站的监控系统及其方法

    公开(公告)号:CN103560532A

    公开(公告)日:2014-02-05

    申请号:CN201210091324.1

    申请日:2012-03-30

    IPC分类号: H02J3/32

    摘要: 本发明提出一种兆瓦级电池储能电站的监控系统及其方法,系统包括中央监控模块和本地监控模块,两模块之间采用实时通信网络和非实时监测通信网络并行的通信网络结构进行通信与连接。方法包括以下步骤:通过通信网络读取电池储能电站的相关数据,并进行存储和管理;确定电池储能电站总功率需求;确定各储能子站的功率命令值,并下发给各本地监控模块;计算出储能子站中各储能机组的功率命令值,并下发给各储能机组;将本地监控模块中各储能机组的功率命令值、实时数据和非实时数据上传至中央监控模块统一存储和管理。该系统和方法能满足对储能机组集群式实时快速控制和大量传输数据的监测要求,保障了电池健康运行,使储能电站更安全稳定。

    正极性球-板长空气间隙流注-先导转化观测系统及方法

    公开(公告)号:CN111766482B

    公开(公告)日:2021-09-24

    申请号:CN202010651694.0

    申请日:2020-07-08

    IPC分类号: G01R31/12

    摘要: 本发明公开了一种正极性球‑板长空气间隙流注‑先导转化观测系统及方法,该系统包括:冲击电压发生器及其测控系统,用于产生正极性操作冲击标准波;球‑板电极包括球电极和板电极,形成长空气间隙;长空气间隙击穿过程中,光电倍增管用于采集瞬时光功率;光电集成电场传感器采集空间电场强度;电容分压器用于测量电压数据;示波器用于收集和储存瞬时光功率、空间电场强度和电压数据;高速相机用于拍摄长空气间隙击穿过程中流注、先导发展的形状。本发明提供的正极性球‑板长空气间隙流注‑先导转化观测系统及方法,能够解决现有技术的不足,简化了观测手段,可以简单、方便的判断正极性球‑板间隙流注‑先导转化完成时刻。

    一种短空气间隙离子风参数监测方法

    公开(公告)号:CN109521223A

    公开(公告)日:2019-03-26

    申请号:CN201811389650.4

    申请日:2018-11-21

    IPC分类号: G01P5/08

    摘要: 本发明公开了一种短空气间隙离子风参数监测方法,属于短空气间隙离子风参数监测技术领域,包括以下两大步骤:(一)、离子风头部运动速度的变化规律参数监测,包括如下步骤:a.计算离子风头部运动速度:b.根据离子风在电场中的实际受力情况,通过方程式描述离子风头部运动状态,即可得到从tn至tn+1时刻的离子风X-t曲线,综合各段曲线即可获得离子风的迁移运动规律。(二)、离子风光电脉冲信号参数监测,包括如下步骤:a.连接检测设备;b.连接触发设备;c.同步记录产生离子风的电流脉冲信号和离子风的光脉冲信号;d.离子风光电脉冲信号参数监测。该方法具有较高的检测精度与较强的灵敏度,拥有较大的工程实际应用价值。