-
公开(公告)号:CN101514484A
公开(公告)日:2009-08-26
申请号:CN200910046387.3
申请日:2009-02-20
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种氢化物气相外延(HVPE)氮化镓(GaN)膜中使用的纳米多孔材料衬底及其制备方法,其特征在于采用复合纳米多孔材料作为厚膜GaN外延生长的衬底,改善晶体质量,同时方便衬底的剥离。先在以Si为衬底的GaN模板上沉积一层金属Al薄层,经电化学的方法形成均匀的多孔网状阳极氧化铝(AAO),再采用诱导耦合等离子体刻蚀(ICP)等技术,刻蚀得到多孔GaN材料,孔的底部露出Si衬底表面;在此基础上采用腐蚀方法,实现对Si的腐蚀并获得复合纳米多孔结构;通过表面处理,使得Si的表面覆盖SiNx或者SiO2层,以满足后续的外延生长需求。经清洗后,再放入HVPE系统中生长厚膜GaN层。大大简化了光刻制作掩膜的工艺,适合于科学实验和批量生产时采用。
-
公开(公告)号:CN101320686A
公开(公告)日:2008-12-10
申请号:CN200810040201.9
申请日:2008-07-04
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/205
Abstract: 本发明涉及一种氢化物气相外延生长氮化镓膜中采用二氧化硅纳米粒子点阵掩膜及其制备方法,其特征在于采用了SiO2纳米粒子点阵作为GaN横向外延过生长的掩膜。先在GaN模板上电子束蒸发一层金属Al,再采用电化学的方法生成多孔状阳极氧化铝(AAO),接着沉积一层介质SiO2层,然后用酸或碱溶液去除AAO,这样就在GaN模板上得到了SiO2纳米粒子的点阵分布,经过清洗后,最后把这个模板作为衬底,置于HVPE反应腔内生长GaN厚膜。本发明不仅大大简化了光刻制作掩膜的工艺,而且将掩膜尺寸缩小到纳米量级,金属Al和SiO2层均可采用电子束蒸发、溅射等方法来制备,适合于批量生产时采用。
-
公开(公告)号:CN101220466A
公开(公告)日:2008-07-16
申请号:CN200710172321.X
申请日:2007-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C23C16/34 , C23C14/32 , C23C14/34 , H01L21/20 , H01L21/205
Abstract: 本发明涉及一种采用钨辅助热退火制备氮化镓(GaN)纳米线的方法,其特征在于采用了金属钨(W)作为催化剂。在热退火制备GaN纳米线的过程中,先在GaN模板上电子束蒸发一层W薄层,然后在N2气氛下经热退火后就形成了GaN纳米线。金属钨薄膜的引入,作用是生长GaN纳米线的催化剂,在高温下金属W会发生团聚同时下层的GaN会分解使得金属W层形成分立的多孔网状结构,从而暴露出部分的GaN膜,同时分生成的金属Ga和N原子在金属W催化剂的作用下又合成细长的GaN纳米线。这种方法简单易行,仅需要沉积或溅射一层薄薄的金属W层,适合于科学实验和批量生产时采用。
-
公开(公告)号:CN1737195A
公开(公告)日:2006-02-22
申请号:CN200510028366.0
申请日:2005-07-29
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C23C16/34
Abstract: 本发明涉及一种氢化物气相外延(HVPE)氮化镓(GaN)膜中的金属插入层及制备方法,其特征在于采用了金属钨(W)插入层的结构。在HVPE制备GaN膜的过程中,先在GaN模板上电子束蒸发一层W薄层,然后经高温退火后继续HVPE生长GaN层。金属钨插入层的引入,作用是产生微区掩膜,金属W薄膜在高温下会发生团聚,同时与W接触的下层的GaN会分解,使得金属W层形成分立的多孔网状结构,从而暴露出部分的GaN膜,由于气相外延的选择性,HVPE生长时GaN将选择生长在下层的GaN上,然后经过横向外延生长过程连接成完整的GaN膜。通过GaN的微区横向外延,降低了生长的GaN的位错密度。简单易行,适合于批量生产采用。
-
公开(公告)号:CN111717911A
公开(公告)日:2020-09-29
申请号:CN201911030351.6
申请日:2019-10-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B32/188
Abstract: 本发明涉及二维材料制备技术领域,特别涉及一种石墨烯薄膜的制备方法,包括:在碳化硅基底上设置催化剂得到反应样品;将所述反应样品加热至第一预设温度;将所述反应样品保温第一预设时长;其中,所述催化剂的熔点低于第一预设温度,所述催化剂的沸点高于第一预设温度;所述碳化硅基底包含的硅原子能够溶解在液态的所述催化剂中。本发明采用液态催化剂,以碳化硅为基底及固态碳源,通过高温催化碳化硅热分解,并在液态催化剂中溶解硅原子,剩余碳原子在液态催化剂与碳化硅的界面处重排,生成石墨烯。无需额外气态碳源,降低了制备过程中的工艺难度,且所得石墨烯无需转移,在电子器件等方面具有巨大的应用潜力。
-
公开(公告)号:CN106884153B
公开(公告)日:2019-04-30
申请号:CN201510934979.4
申请日:2015-12-15
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于干法清洗工艺制备铜衬底的方法,包括步骤:步骤1),提供制备石墨烯用的铜衬底;步骤2),将所述铜衬底置于有氧环境中处理,使所述铜衬底表面氧化,形成氧化层;以及步骤3),去所述铜除衬底表面的氧化层,得到清洁的铜衬底表面。本发明通过氧化石墨烯生长用铜衬底,使得衬底表面层氧化并从衬底脱落,获得适宜高质量石墨烯制备的清洁铜表面,该方法获得的铜衬底可明显降低成核密度,减少石墨烯中的缺陷。本发明的方法重复性高、简单易行,并且可控性强,适合工业化应用的批量化处理。
-
公开(公告)号:CN108570710A
公开(公告)日:2018-09-25
申请号:CN201810468715.8
申请日:2018-05-16
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种铜晶须的制备方法,包括:1)提供铜基材,将所述铜基材置于硫源溶液中进行硫化反应,以在所述铜基材表面形成铜的硫化物;2)对表面具有铜的硫化物的所述铜基材进行清洗及干燥处理;3)对表面具有铜的硫化物的所述铜基材置于还原气氛中进行还原反应,以在所述铜基材表面生长形成铜晶须。本发明的制备方法重复性高、简单易行,适用于铜晶须的规模批量制备。本发明可以通过控制铜硫化反应的程度以及还原反应的程度来控制铜晶须的生长速度和尺寸。本发明利用不同的铜基材,可实现铜线、铜板、铜粉等上晶须的生长,增强或拓展基材的性能。
-
公开(公告)号:CN106884153A
公开(公告)日:2017-06-23
申请号:CN201510934979.4
申请日:2015-12-15
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: C23C16/02 , C23C16/26 , C30B25/186 , C30B29/02
Abstract: 本发明提供一种基于干法清洗工艺制备铜衬底的方法,包括步骤:步骤1),提供制备石墨烯用的铜衬底;步骤2),将所述铜衬底置于有氧环境中处理,使所述铜衬底表面氧化,形成氧化层;以及步骤3),去所述铜除衬底表面的氧化层,得到清洁的铜衬底表面。本发明通过氧化石墨烯生长用铜衬底,使得衬底表面层氧化并从衬底脱落,获得适宜高质量石墨烯制备的清洁铜表面,该方法获得的铜衬底可明显降低成核密度,减少石墨烯中的缺陷。本发明的方法重复性高、简单易行,并且可控性强,适合工业化应用的批量化处理。
-
公开(公告)号:CN106829943A
公开(公告)日:2017-06-13
申请号:CN201611156543.8
申请日:2016-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B32/194
Abstract: 本发明提供一种提高石墨烯膜表面亲水性的方法,包括以下步骤:1)配置表面活性剂溶液;以及2)将石墨烯薄膜与衬底的结合体在所述表面活性剂溶液中放置一定时间。根据本发明提供的方法,利用表面活性剂的亲水疏水基团实现对石墨烯膜表面的亲疏水性的调节,该方法能够简单快速地提高石墨烯膜的亲水性,大大节约了时间成本,并且操作简单,节省了人工成本、材料成本;还具有环境友好性,适宜大幅推广;并且不受石墨烯膜尺寸的限制;由于提高了石墨烯膜的亲水性,还进一步扩大了石墨烯材料的应用领域。
-
公开(公告)号:CN106756869A
公开(公告)日:2017-05-31
申请号:CN201611130948.4
申请日:2016-12-09
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: C23C16/26 , C23C16/0272
Abstract: 本发明提供一种无粘连金属密堆生长石墨烯的方法,所述方法包括步骤:步骤1),在金属箔片的第一表面沉积氧化物,金属箔片的第二表面为金属面,将金属箔片按氧化物表面朝向金属面的顺序堆叠或者卷起来,形成金属堆垛或金属卷;步骤2),采用化学气相沉积法于所述金属堆垛或金属卷的金属面上生长石墨烯。本发明的方法重复性高、简单易行,可用于大面积高质量石墨烯的规模批量制备;本发明通过在金属箔片背面沉积氧化物的方法,避免了金属箔片之间的相互粘连,可一次性在CVD设备腔体中放入大量或大面积的金属箔片,极大的提高了石墨烯的生长效率。
-
-
-
-
-
-
-
-
-