-
公开(公告)号:CN1554947A
公开(公告)日:2004-12-15
申请号:CN200310122866.1
申请日:2003-12-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 南通医学院附属医院
IPC: G01N33/493 , G01N27/413
Abstract: 本发明涉及一种毛细管电泳芯片分离检测尿蛋白的方法,其特征在于首先通过微加工工艺制作石英介质的毛细管电泳芯片,然后在管道中冲入筛分介质,并在加样池中加入检测样品,最后将加样后的毛细管电泳芯片置于光学检测平台上,各池中插入相应电极,施加适当时序和幅值的电压进行分离检测。与常规尿蛋白分离检测技术相比,本发明具有样品和试剂消耗量少,检测速度快,成本低等优点。
-
公开(公告)号:CN107758605B
公开(公告)日:2020-01-31
申请号:CN201610674138.9
申请日:2016-08-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C1/00 , B81B7/00 , G01N33/483
Abstract: 本发明提供一种微电极阵列芯片及其制作方法,所述制作方法包括:在第一基底上制作微电极阵列结构;在第二基底上制作带有微管道阵列的覆盖层;将覆盖层揭下并在所述覆盖层上打孔,形成进样口阵列;将带有进样口阵列的覆盖层与微电极阵列结构对准贴合;在进样口处加入可热分解聚合物溶液并使其充满整个微管道,对其进行加热固化,而后揭去带有进样口阵列的覆盖层;在S7所述结构上形成具有刺激口阵列的光刻胶固化膜;对S8所述结构进行加热,使可热分解聚合物汽化挥发,形成微管道阵列结构;之后在微管道阵列结构上方粘接培养腔环。通过本发明所述的微电极阵列芯片及其制作方法,解决了现有技术中所述微电极阵列芯片无法对刺激位点进行精确定位的问题。
-
公开(公告)号:CN107758605A
公开(公告)日:2018-03-06
申请号:CN201610674138.9
申请日:2016-08-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C1/00 , B81B7/00 , G01N33/483
Abstract: 本发明提供一种微电极阵列芯片及其制作方法,所述制作方法包括:在第一基底上制作微电极阵列结构;在第二基底上制作带有微管道阵列的覆盖层;将覆盖层揭下并在所述覆盖层上打孔,形成进样口阵列;将带有进样口阵列的覆盖层与微电极阵列结构对准贴合;在进样口处加入可热分解聚合物溶液并使其充满整个微管道,对其进行加热固化,而后揭去带有进样口阵列的覆盖层;在S7所述结构上形成具有刺激口阵列的光刻胶固化膜;对S8所述结构进行加热,使可热分解聚合物汽化挥发,形成微管道阵列结构;之后在微管道阵列结构上方粘接培养腔环。通过本发明所述的微电极阵列芯片及其制作方法,解决了现有技术中所述微电极阵列芯片无法对刺激位点进行精确定位的问题。
-
公开(公告)号:CN104497099A
公开(公告)日:2015-04-08
申请号:CN201410723333.7
申请日:2014-12-02
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C07K1/14
Abstract: 本发明涉及一种气相扩散型结晶芯片及使用方法,其特征在于:①所述结晶芯片是由一个表面加工有微管道结构且具有疏水特性的基片和一个表面平整且具有亲水特性的基片键合构成;②表面加工有微管道结构的基片为圆盘状微流控芯片,包含多组辐射状对称排列的微结构单元,每个单元的结构至少包含一个结晶微反应腔、一个微隔离腔和一段结晶剂储液微管道,其中微隔离腔两侧通过连接微管道分别与微反应腔和结晶剂储液微管道相连,使得结晶微反应腔中的结晶液和结晶剂储液微管道中的结晶剂处于一个共通的空间,彼此之间发生气相物质交换。所述的气相扩散型结晶芯片,克服了现有结晶微流控芯片无法实现气相扩散型结晶操作的不足,大大降低珍贵样品和试剂的消耗。
-
公开(公告)号:CN103343092B
公开(公告)日:2014-12-03
申请号:CN201310306080.9
申请日:2013-07-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明拟涉及一种基于矿物油饱和PDMS材料数字PCR芯片的制备方法。其特征在于将一定量矿物油(液体石蜡)的PDMS单体制备PDMS数字PCR芯片,芯片包括乳滴生成结构、乳滴收集结构两部分。乳滴在同一芯片上制作、收集,然后在同一芯片上进行PCR扩增。该芯片避免了PDMS对数字PCR体系中油相的吞噬,有利于维持PCR反应过程中乳滴及PCR反应的稳定性。而且与目前数字PCR芯片技术相比,成本低,操作简便,应用前景非常广泛。
-
公开(公告)号:CN102179000B
公开(公告)日:2014-09-24
申请号:CN201110056408.7
申请日:2011-03-09
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: A61N1/05
Abstract: 本发明公开了一种基于碳膜的柔性神经微电极及其制作方法,该方法利用热解图形化光刻胶形成的碳膜作为导电层,结合聚合物包覆形成绝缘层制作柔性神经微电极。相比传统的基于贵金属(如铂、金、铱等)的柔性神经微电极,基于碳膜的柔性神经微电极具有更好的电化学稳定性和生物相容性,且易于通过光刻和微纳压印等手段制作三维高比表面积的电极位点,可大大提高电极的电荷注入能力和生物安全性,有助于实现植入式神经微电极的长期安全、有效、可靠和高分辨率的刺激效果。且该电极制作方法与基于金属的微电极制作方法相比,具有工艺简单、成本低、可重复性强,设计灵活的优势。
-
公开(公告)号:CN103278643A
公开(公告)日:2013-09-04
申请号:CN201310182719.7
申请日:2013-05-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N33/68
Abstract: 本发明涉及一种用于微量蛋白检测的微芯片的制备方法,包括:以硅片为基底材料,以SU-8光刻胶作为掩模层,分别曝光、显影制作模具A和模具B;将PDMS和固化剂混合后,分别浇注在模具A和模具B上,加热固化;分别剥离A-PDMS、B-PDMS;A-PDMS打孔后,与经过处理的玻璃片贴合;将A-PDMS揭掉后,将固定有抗体的玻璃片与B-PDMS对准贴合,并取另一经打孔的玻璃片贴合在B-PDMS的另一面,即得微芯片。本发明的微芯片将全血中血浆的分离、检测连接为一体,可以一次针对多个靶目标的检测,具有特异、快速和高灵敏的特点,可望应用于临床中微量全血中多种蛋白的诊断和检测。
-
公开(公告)号:CN101968131B
公开(公告)日:2013-04-24
申请号:CN201010289621.8
申请日:2010-09-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种基于相替换触发的毛细微阀及其应用,所述微阀为一种单向被动阀,由进样微管道上一段横截面突变的微管道或微腔体和一条与其相连的油相填充微管道构成。当水相样品流经管道横截面突变处时,表面张力作用其前端水相/气相界面的曲率发生变化,导致水相流体所受反向压强增加,当此反向压强与水相样品驱动压达到平衡时,即可实现对水相样品的控制限流作用,发挥阀的关闭功能;若通过油相填充管道导入油样,以油相替代处于限流平衡状态水相样品前界面的气相,则水相前界面的表面张力将降低,从而降低水相前界面所受反向压力,实现阀的开启功能。提供的毛细微阀,可应用于微生化反应器和芯片实验室。
-
公开(公告)号:CN101950126B
公开(公告)日:2012-08-29
申请号:CN201010275953.0
申请日:2010-09-08
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种基于SU-8厚光刻胶的三维圆滑曲面微结构的制作方法,其特征在于所述的方法以聚二甲基硅氧烷(polydimethylsiloxane,PDMS)压模技术结合未交联SU-8光刻胶的回流特性制作具有圆滑曲面特征的微结构。首先通过光刻工艺制作SU-8原模,并以此原模浇注PDMS形成母模,然后利用压模技术将此PDMS母模转制成SU-8阳模,剥离PDMS模具后,将此未经曝光交联反应的SU-8阳模置于高温(55℃~120℃)环境下回流,形成具有圆滑曲面特征的三维微结构。本发明提出的圆滑曲面微结构的制作方法相对于传统的灰阶掩膜技术、发散光曝光技术和正性光刻胶回流方法,具有加工简便、成本低廉、结构稳固、结构曲率范围更大等特点。
-
公开(公告)号:CN101659391A
公开(公告)日:2010-03-03
申请号:CN200910195109.4
申请日:2009-09-04
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种圆滑曲面微结构的制作方法,其特征在于所述的方法以负性化学放大光刻胶(chemically amplified photoresist)为圆滑曲面微结构的制作材料,首先在基片上旋涂第一层负性化学放大光刻胶,并软烘、曝光,然后直接在第一层负性化学放大光刻胶上旋涂第二层负性化学放大光刻胶,并进行后烘;利用后烘过程中第一层光刻胶曝光后产生的光酸各向同性扩散,催化曝光区域及其相邻扩散区域光刻胶分子交联,显影后制得具有圆滑曲面特征的微结构。本发明提出的圆滑曲面微结构的制作方法相对于传统的灰阶掩膜技术和光刻胶回流方法,具有加工简便、成本低廉、结构稳固等特点。
-
-
-
-
-
-
-
-
-