-
公开(公告)号:CN114753991A
公开(公告)日:2022-07-15
申请号:CN202210679130.7
申请日:2022-06-16
Abstract: 本发明公开了一种可伸缩式吸气剂泵抽真空装置及应用方法。装置包括机械泵、分子泵、实验平台、离子泵、伸缩式吸气剂泵结构、真空规、真空腔、金属角阀、小抽气管、分子泵卡箍、大抽气管、大抽气管卡箍、硬管支撑、电动阀、硬管、硬弯管、离子泵支撑、离子泵角阀、支撑柱、离子泵直通管。其中伸缩式吸气剂泵结构由短直通管、螺钉、插板阀、伸缩管、直线导轨、调节架、手轮、手摇杆、右支架、定位块、左支架、吸气剂泵、左支架支撑、右支架支撑、调节丝杠等组成。利用伸缩式吸气剂泵结构,带动吸气泵剂整体移动,吸气剂泵远离或靠近真空腔,可适用经常破空的实验环境系统,可应用在量子传感、生物、化工、环境监测等需要抽超高真空领域。
-
公开(公告)号:CN111290041B
公开(公告)日:2022-06-21
申请号:CN202010197933.X
申请日:2020-03-19
IPC: G01V8/10
Abstract: 本发明公开了一种利用电光调制器比例补偿抑制光源强度噪声的方法和装置。利用光分束器件将光源输出按比例分束,形成一对高功率和低功率光束,对高功率光束进行采样,获取光强波动信息,通过信号处理模块将调制信号加载至电光调制器,以调制低功率光束的光强波动,以产生与高功率光束强度相同、相位差为180度的光信号,最后与高功率光束合束输出,从而达到抑制输出光光强波动的效果。本发明克服了电光调制器功率阈值低的缺点,实现了大功率激光器在强度噪声抑制,成本低,易于应用实施。
-
公开(公告)号:CN114049980A
公开(公告)日:2022-02-15
申请号:CN202111098886.4
申请日:2021-09-18
IPC: G21K1/00
Abstract: 本发明公开了一种真空光镊中的新型微球起支系统和方法。真空腔内固定有柱状的包裹物质,包裹物质内均匀间隔固定包裹有多个微球,真空腔的腔壁上开设有透光光学窗口,真空腔外的起支激光透过透光光学窗口照射到包裹物质的末端,使得包裹物质吸热分解,释放出一个或多个微球。本发明利用包裹物质易分解的性质,通过起支激光对包裹物质加热分解释放微球,减小了对微球尺寸的限制;由于起支激光从真空腔外发出,避免了额外的连接,提高了环境的封闭性,减少了外界环境输入的干扰,有利于精密测量;本发明能较为精确地控制每次起支释放的微球数量,减少多余微球对真空腔的污染,增加起支次数,提高光镊捕获单个微球的成功率。
-
公开(公告)号:CN112880912B
公开(公告)日:2022-01-18
申请号:CN202110025166.9
申请日:2021-01-08
IPC: G01L21/00
Abstract: 本发明公开了一种基于真空全息光镊的空间分辨压强测量系统及方法。包括真空腔、微纳粒子、光镊装置及反馈冷却装置、驱动电场装置、空间光调制器、偏振控制及检测装置和残余气体分析仪;激光从激光源出来经过第一分光镜入射到第一偏振分光镜发生透射,经空间光调制器反射调制、第一凸透镜透射汇聚后形成捕获光,捕获光照射微纳粒子处形成光阱捕获区域,捕获光经过微纳粒子后经第二凸透镜透射汇聚后入射到第二偏振分光镜发生反射和透射,第二偏振分光镜发生反射的光束入射到第一光电二极管;六个电极布置在光阱捕获区域周围。本发明利用全息光镊的操控灵活性,结合微纳粒子的局域探测手段,可以实现高真空下微纳尺度空间分辨率的压强分布测量。
-
公开(公告)号:CN112880912A
公开(公告)日:2021-06-01
申请号:CN202110025166.9
申请日:2021-01-08
IPC: G01L21/00
Abstract: 本发明公开了一种基于真空全息光镊的空间分辨压强测量系统及方法。包括真空腔、微纳粒子、光镊装置及反馈冷却装置、驱动电场装置、空间光调制器、偏振控制及检测装置和残余气体分析仪;激光从激光源出来经过第一分光镜入射到第一偏振分光镜发生透射,经空间光调制器反射调制、第一凸透镜透射汇聚后形成捕获光,捕获光照射微纳粒子处形成光阱捕获区域,捕获光经过微纳粒子后经第二凸透镜透射汇聚后入射到第二偏振分光镜发生反射和透射,第二偏振分光镜发生反射的光束入射到第一光电二极管;六个电极布置在光阱捕获区域周围。本发明利用全息光镊的操控灵活性,结合微纳粒子的局域探测手段,可以实现高真空下微纳尺度空间分辨率的压强分布测量。
-
公开(公告)号:CN110595151B
公开(公告)日:2021-06-01
申请号:CN201910889421.7
申请日:2019-09-19
IPC: G02B6/42
Abstract: 本发明公开了一种利用自聚焦光纤形成光阱并且冷却微粒的方法及装置。自聚焦光纤出射捕获光,形成光阱;从垂直于光纤光轴的方向收集微粒的散射光,解析出微粒在三个正交方向上的运动信息;基于该运动信息冷却微粒的质心运动。该装置包括捕获光阱模块、运动探测模块和反馈冷却模块。本发明可提高微粒对捕获光的散射效率,增大光阱中稳定捕获点与光纤端面的间距;将高时间分辨率的光电探测器与光纤光阱结合,解决传统光纤光阱无法冷却微粒质心运动的难题;施加冷却方案后的光纤光阱,可在高真空环境下稳定悬浮微粒,最终提高光纤光阱测量装置的探测灵敏度和系统集成度。
-
公开(公告)号:CN112255578A
公开(公告)日:2021-01-22
申请号:CN202011424322.0
申请日:2020-12-08
IPC: G01R33/032 , G01K11/20
Abstract: 本发明涉及一种基于光镊和自旋缺陷的多物理参数传感的装置和方法,该装置包括第一激光器、第二激光器、第一光调制器、第二光调制器、分束器、合束器、物镜、透镜、第一光电探测器、第二光电探测器、微波源、微波调制器、微波天线、双色片、荧光探测器、控制显示系统。通过在光阱中悬浮含有自旋缺陷的微纳米级尺寸的金刚石颗粒,根据金刚石颗粒的运动,得到各种物理参数。本发明的装置和方法可以实现同一空间位置的多物理参数传感,避免了信息的梯度差;且本发明的装置将不同探测对象所需的系统集成到一起,实现单个设备的多物理参数探测,节省载荷空间、节约成本。
-
公开(公告)号:CN111551250A
公开(公告)日:2020-08-18
申请号:CN202010667605.1
申请日:2020-07-13
Abstract: 本发明公开了一种测量光场分布的方法及装置。利用光阱稳定悬浮微粒,移动光阱使微粒靠近待测光场,利用光电探测器收集微粒在待测光场的三维空间中不同位置的散射光信号,根据散射光强与该位置的光强成正比解算出待测光场的光场分布。测量光场分布的装置,包括激光器、捕获光路、微粒、光电探测器、控制系统和上位机;激光器出射激光,经过捕获光路,出射高度聚焦的捕获光B,形成光阱,捕获微粒;微粒在待测光场A中的某个位置,散射光C被光电探测器收集;光电探测器将散射光信号上传到上位机;上位机根据不同位置处获取的散射光信号解算出待测光场A的光场分布。本发明可精确获得光场的三维光强分布,将光场测量的空间分辨率提升到纳米量级。
-
公开(公告)号:CN111061064A
公开(公告)日:2020-04-24
申请号:CN201911405562.3
申请日:2019-12-30
Abstract: 本发明公开了一种双光束光阱光束辅助对准装置和方法。置于光阱中心处,一对三角棱镜均为直角三角形,以各自的一侧直角边所在平面完整紧贴连接、以各自的另一侧直角边所在平面相互平行布置而形成平行四边形棱镜,平面反射镜水平且反射面朝上,另一侧直角边所在平面的其中一个固定紧贴布置于平面反射镜的一半侧,一对三角棱镜的斜边所在平面镀有半透半反射膜;一对四象限位置探测器水平布置于同一平面,位于平面反射镜和一对三角棱镜上方。本发明可简单有效辅助光阱光束的光学调整,提高光阱性能,为以光阱为核心部件的光力悬浮系统提供一个高效快速、方便一致性的调整方案。
-
公开(公告)号:CN119207859B
公开(公告)日:2025-03-28
申请号:CN202411711280.7
申请日:2024-11-27
Applicant: 之江实验室
IPC: G21K1/00
Abstract: 本发明公开一种实现微粒间光诱导偶极‑偶极相互作用原位调谐的装置,包括光源模块、光阱调制模块、真空腔模块、探测模块和控制模块;光源模块为光阱调制模块提供高功率激光的同时为探测模块提供参考光;光阱调制模块用于对激光光束进行调制,产生相位相干的双光束;真空腔模块为光悬浮纳米微粒提供真空环境;探测模块实现对纳米微粒运动的探测;控制模块对探测信号进行分析处理,反演微粒的相互作用强度并产生控制信号,控制光阱调制模块中的强度调制器对光束施加交流高频调制,利用反馈控制实现对两个纳米微粒振荡振幅的控制,从而实现纳米微粒间光诱导偶极‑偶极相互作用的原位调谐和控制。本发明能够提供高真空下的双纳米微粒的稳定悬浮。
-
-
-
-
-
-
-
-
-