一种高发光量子效率CsPbBr3钙钛矿量子点玻璃及其制备方法和应用

    公开(公告)号:CN114394753A

    公开(公告)日:2022-04-26

    申请号:CN202111489371.7

    申请日:2021-12-07

    Abstract: 本发明公开了一种CsPbBr3钙钛矿量子点玻璃及其制备方法。该量子点玻璃组成:20~35%SiO2,10~25%ZnO,30~50%B2O3,3~8%SrCO3,1~5%K2CO3,0.5~3%BaCO3,0.1~2%Sb2O3,1~5%Cs2CO3或2~10%CsBr,1~10%PbBr2或PbO,1~10%NaBr或KBr;上述各组分的摩尔百分比之和为100%。制备方法包括:S1.按照玻璃组成称取原料并将原料充分混匀,经高温熔融后倒入石墨模具中,得到前驱体玻璃;S2.将所得前驱体玻璃转入马弗炉中进行退火处理;S3.将退火处理的前驱体玻璃放入马弗炉中进行热处理。本发明制得的量子点玻璃在蓝光激发下发射主峰位于526nm,半峰宽为23nm,且具有高的发光量子效率,此外,该量子点玻璃还能耐受高温烘烤,在宽色域显示领域具有良好应用前景。

    一种油溶性碳点在指纹检测中的应用

    公开(公告)号:CN113511642A

    公开(公告)日:2021-10-19

    申请号:CN202110435912.1

    申请日:2021-04-22

    Abstract: 本发明属于纳米材料技术领域,公开了一种油溶性碳点在指纹检测中的应用。所述油溶性碳点按照以下制备方法制备得到:将501.0mg二硫代水杨酸加入50ml醋酸溶液中搅拌至完全溶解,加入2.5mL乙二胺,搅拌2h,随后将混合溶液转入反应釜中,加热至160‑200℃保温4‑12h;自然冷却至室温,将反应后溶液倒入沸水中,过滤,干燥,得到油溶性碳点。本发明提供的原料易得,制备方法简单,绿色环保,应用性强,所得油溶性碳点在指纹检测方面具有较好的应用前景。

    一种促进豆芽生长的碳点纳米复合发光材料及其制备方法和应用

    公开(公告)号:CN110330973B

    公开(公告)日:2021-10-19

    申请号:CN201910501060.4

    申请日:2019-06-11

    Abstract: 本发明属于纳米材料技术领域,公开了一种促进豆芽生长的碳点纳米复合材料及其制备方法和应用。制备方法具体包括以下步骤:A、油浴回流法制备溶胶二氧化硅;B、油浴回流和水热法制备六方相NaYF4:Yb,Er上转换纳米颗粒;C、水热法制备CDs;D、通过机械搅拌方式将溶胶二氧化硅、碳点与NaYF4:Yb,Er复合,洗涤干燥得到NaYF4:Yb,Er/碳点纳米复合发光材料。所得纳米复合发光材料配成溶液得到不同浓度的培养液培育豆芽,促进豆芽生长,进行豆芽荧光成像。本发明方法工艺简单,易于操作,成本低且环保,得到的复合材料纳米颗粒具有良好的水分散性和稳定性。在农业和植物成像方面有着潜在的应用前景。

    一种促进植物光合作用的叶片表面的纳米转光技术

    公开(公告)号:CN110278860B

    公开(公告)日:2021-08-24

    申请号:CN201910500776.2

    申请日:2019-06-11

    Abstract: 本发明属于纳米材料技术领域,公开了一种促进豆芽光合作用的叶片表面的纳米转光方法。制备方法具体包括以下步骤:A、油浴回流法制备溶胶二氧化硅;B、油浴回流和水热法制备六方相NaYF4:Yb,Er上转换纳米颗粒;C、水热法制备CDs;D、通过机械搅拌方式将溶胶二氧化硅、碳点与NaYF4:Yb,Er复合,洗涤干燥得到NaYF4:Yb,Er/碳点纳米复合转光材料。所得纳米复合发光材料配成悬浊液喷洒于豆苗叶片表面,实现叶片表面转光(吸收近红外光发射红光),从而促进豆苗光合速率,并且进行豆苗叶片荧光成像。本发明制备得到的复合材料纳米颗粒具有良好的水分散性和稳定性。在光照农业和植物成像有着潜在的应用前景。

    一种二氧化钛-叶绿素复合物及其制备方法和应用

    公开(公告)号:CN112588325A

    公开(公告)日:2021-04-02

    申请号:CN202011150258.1

    申请日:2020-10-23

    Abstract: 本发明公开了一种二氧化钛‑叶绿素复合物的制备方法,其包括以下步骤:用酒精浸泡绿色蔬菜叶,浸泡后去除绿色蔬菜叶,获得叶绿素提取液备用;取二氧化钛粉末,加入所述叶绿素提取液,然后研磨得到二氧化钛‑叶绿素复合物。本发明还公开了所述二氧化钛‑叶绿素复合物的应用。本发明利用了叶绿素受光激发能迅速发生电荷分离的性能,将叶绿素与二氧化钛复合,叶绿素通过捕获二氧化钛的光生电子增加了二氧化钛表面的缺陷;同时,叶绿素能够大幅减少二氧化钛的体相氧空位,通过以上两种作用,叶绿素有效地抑制了二氧化钛的电子空穴复合率,并提高了二氧化钛光催化降解污染物的速率。

Patent Agency Ranking