基于量子世界杯竞争机制的智能抗干扰决策方法

    公开(公告)号:CN113313262A

    公开(公告)日:2021-08-27

    申请号:CN202110684852.7

    申请日:2021-06-21

    Abstract: 本发明提供一种基于量子世界杯竞争机制的智能抗干扰决策方法,包括如下步骤:步骤一:建立智能抗干扰决策模型;步骤二:初始化量子球队人员分配;步骤三:令量子球队两两对抗,进行淘汰赛;步骤四:决出冠军,进行比较;步骤五:判断t是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,y=1后返回步骤三继续执行;步骤六:输出最后一赛季的冠军球队人员分配作为最优解。本发明所设计的基于量子世界杯竞争机制的智能抗干扰决策方法能够得到比粒子群算法更优秀的结果,说明了本方法的可靠性,能在创建少量种群的情况下进行运算而不会陷入局部最优解。

    冲击噪声环境下的量子瞭望非圆测向方法

    公开(公告)号:CN113109758B

    公开(公告)日:2022-12-13

    申请号:CN202110358005.1

    申请日:2021-04-01

    Abstract: 本发明提供一种冲击噪声环境下的量子瞭望非圆测向方法,包括:建立阵列接收非圆信号的数学模型,构建低阶实值加权协方差矩阵,利用低阶实值加权协方差矩阵构造极大似然测向方程;初始化量子瞭望群体和量子信仰空间,计算量子瞭望群体中量子位置的适应度并获得整个量子瞭望群体的最优量子位置;更新量子规范知识,根据瞭望机制进行量子形势知识空间更新;使用模拟量子旋转门通过量子信仰空间和量子瞭望机制实现量子个体的寻优搜索过程;判断是否达到最大迭代次数G,若未达到,令g=g+1,返回步骤三;否则终止迭代循环,将最后一代中的最优量子位置的映射态作为测向结果输出。本发明在低快拍、冲击噪声环境下具有鲁棒性,突破现有非圆测向方法的局限性。

    基于量子鲨鱼机制的AUV全局路径规划方法

    公开(公告)号:CN112947506B

    公开(公告)日:2022-08-02

    申请号:CN202110468435.9

    申请日:2021-04-28

    Abstract: 本发明提供一种基于量子鲨鱼机制的AUV全局路径规划方法,采用多Lamb涡流叠加技术和障碍物栅格等效技术来实现环境建模。本发明所提供的AUV全局路径规划模型包括决策变量设计、航行代价设计、约束条件设计和代价函数设计四部分,充分考虑了AUV航行路径的安全性、高效性和可靠性,将具有更好的实用性。本发明设计的量子鲨鱼优化机制,可以快速得到AUV全局路径规划路线,其仿生于鲨鱼捕食过程并结合模拟量子旋转门来演化鲨鱼量子态,收敛速度快、收敛精度高,且具有更好的鲁棒性。仿真实验证明了基于量子鲨鱼机制的AUV全局路径规划方法的有效性,且相对于传统的路径规划方法搜索速度更快、精度更高。

    基于量子星系搜索机制的双层异构网络功率分配方法

    公开(公告)号:CN113115456A

    公开(公告)日:2021-07-13

    申请号:CN202110357285.4

    申请日:2021-04-01

    Abstract: 本发明提供一种基于量子星系搜索机制的双层异构网络功率分配方法,包括:建立双层异构网络功率分配模型;初始化星体量子位置;更新量子旋转角,实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K1,若未达到,返回步骤三;若达到,终止循环;选出更优的星系;判断是否达到最大循环次数K2,若未达到,返回步骤五;若达到,终止循环;判断标志变量flag;实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K3,若未达到,返回步骤八;若达到,终止循环,将第g迭代中得到的作为最优结果,判断是否达到最大迭代次数G,若未达到,返回到步骤三;若达到,则终止迭代,将第G次迭代中的最优星体位置输出。本发明能获得比其他的智能求解机制更优秀的系统性能。

    基于量子跳跃逃逸机制的MIMO雷达正交波形设计方法

    公开(公告)号:CN113093146A

    公开(公告)日:2021-07-09

    申请号:CN202110357188.5

    申请日:2021-04-01

    Abstract: 本发明提供一种基于量子跳跃逃逸机制的MIMO雷达正交波形设计方法,包括:建立正交多相编码信号的设计模型;初始化量子种群并设定参数;量子种群内进行杂交操作;定义并计算量子个体位置和杂交位置的适应度;确定量子种群的个体历史最优位置和全局最优位置;更新量子种群的量子位置;量子种群执行逃逸操作;确定量子种群所有量子个体的位置和杂交位置;更新量子种群的个体历史最优位置和全局最优位置;演进终止判断,输出所设计的最优正交波形。本发明通过约束互相关指标和优化自相关指标来设计正交波形;设计了量子跳跃逃逸优化机制来求解正交信号。

    量子牧群机制自动演化PCNN的图像去噪方法

    公开(公告)号:CN112184594A

    公开(公告)日:2021-01-05

    申请号:CN202011096372.0

    申请日:2020-10-14

    Abstract: 本发明提供一种量子牧群机制自动演化PCNN的图像去噪方法,包括:根据椒盐噪声或高斯噪声的影响,得到含噪图像;对噪声污染后图像的进行强噪声滤波;计算自适应滤波窗口尺寸;建立自动演化PCNN图像滤波模型;初始化量子自私牧群的量子位置并设定参数;计算每个个体的适应值和生存价值;使用量子旋转门更新牧群领导者、牧群优势追随者、劣势追随者、牧群叛逃者以及捕食者的量子位置;判断是否达到量子牧群的最大迭代次数,是则终止迭代,返回最优参数;否则继续执行步骤六;输出牧群和捕食者的全局最优位置,并比较二者的生存价值,得出s个最优参数代入PCNN中,激活PCNN得到滤波图像并输出。本发明极大的提高了系统求解关键最优参数的效率和质量。

Patent Agency Ranking