一种融合上下文信息的病害图像识别方法

    公开(公告)号:CN106682704B

    公开(公告)日:2019-08-23

    申请号:CN201710041270.0

    申请日:2017-01-20

    Abstract: 本发明涉及一种基于融合上下文信息的混合卷积神经网络的病害图像识别方法,与现有技术相比解决了病害图像识别率低、鲁棒性差的缺陷。本发明包括以下步骤:训练图像的收集和预处理;构造并训练混合卷积神经网络模型;待测图像的收集和预处理;将测试样本输入训练完成后的混合卷积神经网络模型中,进行病害图像的自动识别,识别出待测病害图像的类别。本发明将病害图像的图片信息和上下文信息相结合进行混合卷积神经网络的构建,从而提高了病害识别的准确率,增强了病害识别算法的鲁棒性。

    一种基于深度学习技术的土壤近红外光谱分析预测方法

    公开(公告)号:CN106124449B

    公开(公告)日:2019-03-05

    申请号:CN201610416869.3

    申请日:2016-06-07

    Abstract: 本发明涉及一种基于深度学习技术的土壤近红外光谱分析预测方法,与现有技术相比解决了无法对土壤成分进行大批量综合分析的缺陷。本发明包括以下步骤:训练样本的获取和预处理;构造基于深度学习的预测模型;测试样本的获取和预处理;将预处理过的测试样本的光谱数据输入构造的预测模型,完成对测试样本土壤成分含量的分析预测;将测试土壤样本采用梅尔域的滤波带系数作为参数,变成二维特征输入训练好的卷积神经网络进行土壤成分含量的分析预测。本发明基于卷积神经网络的结构模型来进行土壤近红外光谱分析预测,提高了近红外光谱土壤主要成分预测的精度和模型的鲁棒性。

    一种基于显著性检测的害虫图像背景去除方法

    公开(公告)号:CN107016680A

    公开(公告)日:2017-08-04

    申请号:CN201710103546.3

    申请日:2017-02-24

    Abstract: 本发明涉及一种基于显著性检测的害虫图像背景去除方法,与现有技术相比解决了害虫图像分割效果差的缺陷。本发明包括以下步骤:对原始害虫图像进行多尺度超像素预处理;显著图的获得与融合计算,在单尺度下基于多特征相似度融合显著性检测得到显著图,并融合多尺度下的显著图得到最终的显著图;对显著图进行阈值分割得到二值图;将二值图与原始害虫图像进行掩码处理得到去除背景后的害虫图像。本发明使用多特征相似度融合方法计算相似度,不仅考虑到图像的颜色信息还考虑到了图像的纹理信息,由此得到更准确的显著图,图像分割结果也更理想。

    一种基于稀疏表示及BP神经网络技术的土壤近红外光谱分析方法

    公开(公告)号:CN106096656A

    公开(公告)日:2016-11-09

    申请号:CN201610416843.9

    申请日:2016-06-07

    CPC classification number: G06K9/6249 G06K9/6256 G06N3/04

    Abstract: 本发明涉及一种基于稀疏表示及BP神经网络技术的土壤近红外光谱分析方法,与现有技术相比解决了土壤分析方法无法满足实际需要的缺陷。本发明包括以下步骤:训练样本土壤集的获取和预处理;构造训练样本土壤数据的稀疏字典并获取训练样本的特征向量;将训练样本的特征向量作为BP神经网络的输入,训练网络参数,构建BP神经网络分类模型;测试样本土壤集的获取和预处理;利用训练样本土壤数据的稀疏字典构造测试样本的特征向量,利用训练好的BP神经网络分类模型完成对测试样本土壤成分的分类预测。本发明基于稀疏表示及BP神经网络框架来进行土壤近红外光谱分析预测,提高了近红外光谱土壤主要成分预测的精度和模型的鲁棒性。

Patent Agency Ranking