一种基于多任务聚类联邦个性学习的模型训练方法及装置

    公开(公告)号:CN117313901B

    公开(公告)日:2024-04-02

    申请号:CN202311597925.4

    申请日:2023-11-28

    IPC分类号: G06N20/00

    摘要: 本发明提供一种基于多任务聚类联邦个性学习的模型训练方法及装置,中央服务器向各客户端下发上一轮训练得到的各客户端所属簇的簇模型参数和其他簇的专家层模型参数,并接收各客户端采用本地数据训练得到的本地模型参数和自适应权重;根据各客户端的本地模型参数对各客户端进行聚类分簇;将同一簇中各客户端的本地模型参数进行联邦平均聚合,形成本轮训练得到的簇模型;各客户端基于自适应权重聚合各簇模型的专家层模型参数,并连接个性化层模型参数,得到预测模型;将本地数据输入预测模型,得到预测结果;构建预测结果和真实标签的损失,以最小化损失为目标,重复训练步骤。本发明提供的训练方法能够解决数据异质性带来的偏差和难以收敛的问题。

    一种基于多任务聚类联邦个性学习的模型训练方法及装置

    公开(公告)号:CN117313901A

    公开(公告)日:2023-12-29

    申请号:CN202311597925.4

    申请日:2023-11-28

    IPC分类号: G06N20/00

    摘要: 本发明提供一种基于多任务聚类联邦个性学习的模型训练方法及装置,中央服务器向各客户端下发上一轮训练得到的各客户端所属簇的簇模型参数和其他簇的专家层模型参数,并接收各客户端采用本地数据训练得到的本地模型参数和自适应权重;根据各客户端的本地模型参数对各客户端进行聚类分簇;将同一簇中各客户端的本地模型参数进行联邦平均聚合,形成本轮训练得到的簇模型;各客户端基于自适应权重聚合各簇模型的专家层模型参数,并连接个性化层模型参数,得到预测模型;将本地数据输入预测模型,得到预测结果;构建预测结果和真实标签的损失,以最小化损失为目标,重复训练步骤。本发明提供的训练方法能够解决数据异质性带来的偏差和难以收敛的问题。

    区块链交易数据查询方法及装置

    公开(公告)号:CN116628285B

    公开(公告)日:2023-11-03

    申请号:CN202310901218.3

    申请日:2023-07-21

    摘要: 本申请提供一种区块链交易数据查询方法及装置,方法包括:根据预存储在区块链网络中的布隆过滤器索引,确定当前的交易查询关键字对应的目标区块;从目标区块对应的预存储在区块链网络内的属性红黑树索引中,查找交易查询关键字对应的链下地址信息,以自该链下地址信息对应的链下数据库中提取交易查询关键字对应的交易数据。本申请能够在降低区块链网络中节点数据存储压力的基础上,有效提高区块链交易数据查询的效率及可靠性,能够有效降低区块链交易数据查询的时间成本和资源成本。