-
公开(公告)号:CN103769239A
公开(公告)日:2014-05-07
申请号:CN201410039849.X
申请日:2014-01-27
Applicant: 济南大学
Abstract: 本发明公开了一种具有多级孔结构的蜂窝型脱硝催化剂及其制备方法,所述催化剂具有蜂窝型结构,在催化剂的壁表面同时具有微米级和纳米级的盲孔,微米级盲孔的直径为0.1-1微米,纳米级盲孔的直径在10-100nm。本发明工艺过程简单,通过添加PMMA(PS)微球和聚氧化乙烯,以及其他添加剂和工艺条件的调整,得到了具有多级孔结构的高孔隙率蜂窝型脱硝催化剂。该催化剂可以产生更多的活性中心、较强的吸附和传质能力,还具有相同单位体积的催化剂用量较少等优点,从而既保证了催化剂的催化性能又降低了催化剂原材料的使用量和成品单位体积的重量。
-
公开(公告)号:CN102757894B
公开(公告)日:2013-07-10
申请号:CN201210272462.X
申请日:2012-07-31
Applicant: 济南大学
Inventor: 马晶 , 高红鹰 , 于明 , 牟宗刚 , 李平 , 朱金璇 , 袁翔宇 , 王晓轩 , 鲍猛 , 倪献智 , 李倩 , 李敏 , 苗泽旺 , 许崇娟 , 陈中合 , 张广友 , 施强
Abstract: 倒锥式微孔鼓泡液相深层发酵装置,包括进气管、鼓泡孔、微孔鼓泡器、加热保温层、发酵反应釜、蝶阀进料口、DO控制仪、通气孔、出料管。其特征是:发酵反应釜底部中心处装有微孔鼓泡器,微孔鼓泡器连接进气管;发酵反应釜底侧部连接出料管,发酵反应釜顶端有蝶阀进料口;发酵反应釜外壁有加热保温层;微孔鼓泡器其特征在于其外表面近似倒锥体,倒锥底面是外凸的圆弧面,倒锥侧面是向内凹进的弧面,倒锥侧面的内凹弧面上有N个微孔鼓泡孔,N个鼓泡孔的开口方向朝斜下方,由朝斜下方至朝发酵反应釜径向过渡。不留气-液接触死角,防止杂菌繁殖,保证产品质量;气泡平均停留时间长,利于生物发酵;便于更换产品时对发酵反应釜的清洗,成本低廉。
-
公开(公告)号:CN102125845A
公开(公告)日:2011-07-20
申请号:CN201010611602.2
申请日:2010-12-29
Applicant: 济南大学
IPC: B01J23/745 , B01J23/83 , B01D53/94 , B01D53/56 , B82Y40/00
Abstract: 本发明公开了一种纳米量子点级柴油车燃料添加型催化剂及其制备方法和应用,步骤为:将三价铈金属盐或者是三价铈和三价铁金属盐混合物加入醇醚中,配成阳离子总浓度为0.001~0.04mol/L的溶液;采用两段升温法对上述溶液进行加热反应,首先升温至100℃,冷凝回流至溶液混合均匀,然后升温至160~200℃,反应至溶液变色即得铈氧化物催化剂或铈铁复合氧化物催化剂。本发明无需调节pH,反应在常温常压下进行,反应简单,可通过温度进行控制,操作方便,所得的催化剂形貌可达100%,产率高,可大规模地应用于柴油工程机械、柴油卡车、柴油客车柴油城市公交车等工具上。
-
公开(公告)号:CN114560462A
公开(公告)日:2022-05-31
申请号:CN202210183941.8
申请日:2022-02-28
Applicant: 济南大学
IPC: C01B32/19 , C01B32/194
Abstract: 本发明涉及碳材料技术领域,具体涉及氮氯共掺杂石墨烯及其制备方法。该方法包括以下步骤:将石墨材料作为工作电极,在硝酸铵和氯化铵的混合溶液中,采用恒电压技术对石墨材料进行电化学剥离,再将电解产物进行固液分离和干燥处理即得到氮氯共掺杂石墨烯。本发明利用常规化工原料,快速、直接、高收率的制备氮氯共掺杂石墨烯。原料成本低廉,制备方法具有可扩展性,便于大规模生产,且产品具有大的边缘尺寸,有利于获得更加优异的电荷存储性能。
-
公开(公告)号:CN107585852B
公开(公告)日:2020-12-01
申请号:CN201710785958.X
申请日:2017-09-04
Applicant: 济南大学
Abstract: 本发明涉及一种臭氧异相催化氧化废水中COD的方法及装置。该方法利用固体催化剂将臭氧分解为氧化性更强的羟基自由基,然后羟基自由基与废水中的有机物发生氧化反应,将有机物转化为二氧化碳和水,从而达到降低废水中COD的目的。该方法中,臭氧与废水中COD的质量比为0.5~1:1,固体催化剂的使用量为0.2~2 g/L,停留时间为0.1~2 h。设计了实现该方法的催化氧化塔,该塔上部为废水和双氧水混合液分布区,中部为催化剂区域,下部为氧气和臭氧混合气体分布区。本发明的优点是解决了臭氧催化氧化中臭氧的利用率低、氧化速率慢的问题。
-
公开(公告)号:CN111450821A
公开(公告)日:2020-07-28
申请号:CN202010331796.4
申请日:2020-04-24
Applicant: 济南大学
Abstract: 本发明公开了一种稳定的钾基碳烟燃烧催化剂的制备方法及所得产品,将具有孔道结构的六方相三氧化钨(HWO)浸渍到钾(K)盐溶液中充分搅拌混合,经蒸干、干燥和焙烧,然后再水洗、干燥,得到稳定的钾基碳烟然烧催化剂(K-HWO)。本发明制备的K-HWO可以将K限域在HWO的分子孔道中,从而防止K流失。同时,K-HWO催化剂中的K既能稳定HWO的六方相结构又是催化碳烟然烧的活性组分,与HWO相比,碳烟的燃烧温度降低了约60℃,并且具有良好的循环稳定性,是一种很好的碳烟燃烧催化剂。
-
公开(公告)号:CN111408401A
公开(公告)日:2020-07-14
申请号:CN202010254963.X
申请日:2020-04-02
Applicant: 济南大学
Abstract: 本发明公开了一种宽温度窗口的Cu-SSZ-13的制备方法及所得产品和应用,该方法以低硅铝比的Na型SSZ-13分子筛为原料,然后依次对其进行NH4NO3和CuSO4交换,得到Cu-SSZ-13。这种制备方法提高了Cu的含量和分散性能,所得Cu-SSZ-13产品铜含量高(Cu含量约为5.3-5.6 wt.%)、铜为原子级分散,在宽的温度窗口内具有优异的NH3-SCR性能,当空速为100000 h-1时,在175-600℃的温度区间内NOx转化率达到100%以上,并且在100-600℃整个温度区间内保持接近100%的N2选择性,具有很好的应用前景。
-
公开(公告)号:CN109499593B
公开(公告)日:2019-08-27
申请号:CN201811432515.3
申请日:2018-11-28
Applicant: 济南大学
IPC: B01J27/232 , F01N3/035 , F01N3/20 , F01N3/023
Abstract: 本发明公开了一种含钾和氧化锌纳米棒的整体式催化剂的制备方法及所得产品和应用,步骤是:在整体式催化剂载体上生长出氧化锌纳米棒,在生长有氧化锌纳米棒的整体式催化剂载体上负载碳酸钾,得整体式催化剂。本发明通过原位生长的方式在整体式催化剂载体上生长上均一规整的氧化锌纳米棒结构,然后再负载钾活性成分制成整体式催化剂,该催化剂可作为DPF直接用于捕集碳烟颗粒物进行催化燃烧,其制备方法简单、易于实施,催化剂背压低、过滤效率高、碳烟与催化剂接触效率高、催化碳烟颗粒燃烧活性高,可以实现DPF的低温主动再生,解决了现有直接涂覆式催化剂背压高、过滤效率低、催化活性差的问题,经济和社会效应显著。
-
公开(公告)号:CN109326786A
公开(公告)日:2019-02-12
申请号:CN201811249226.X
申请日:2018-10-25
Applicant: 济南大学
IPC: H01M4/36 , H01M4/38 , H01M4/58 , H01M4/62 , H01M10/052
Abstract: 本发明属于新能源材料技术领域,具体涉及一种硫化锌/rGO复合材料及其制备方法和应用。一种含有硫空位的硫化锌/rGO复合材料的制备方法:ZnS/GO的制备:将二硫化碳逐滴加入到乙二胺水溶液中,命名为A溶液;将氧化石墨烯GO加入到乙二醇溶液中超声处理,命名为B溶液,将B溶液加入到A溶液中并连续搅拌得混合溶液,在搅拌下向混合物中滴加硝酸锌溶液,加热待溶液冷却至室温后,离心,洗涤,干燥物为ZnS/GO;将步骤(1)制备的ZnS/GO在氩氢混合气下,高温还原,得到含有硫空位的ZnS1-x/rGO。本发明采用一种简单,安全的一锅湿化学载硫方法,摒弃了传统的熔融扩散法,降低了损耗,且活性硫的载量高达90%。
-
公开(公告)号:CN108539171A
公开(公告)日:2018-09-14
申请号:CN201810336867.2
申请日:2018-04-16
Applicant: 济南大学
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/052
Abstract: 本发明属于新能源材料技术领域,具体涉及一种硫化锌与氧化石墨烯复合材料的制备方法及其在锂硫电池正极材料中的应用。该制备方法具体为:将二硫化碳和乙二胺溶液搅拌混合,得混合溶液;将氧化石墨烯加入到溶剂中超声处理,然后加入到混合溶液中,得混合液;将硝酸锌溶液逐滴加入到混合液中,滴加完毕后转移到釜中,反应,冷却,离心分离,洗涤,烘干即可。本发明以过度金属硫化物ZnS为多硫离子的化学吸附及催化活性位,氧化石墨烯为导电基质,以提高复合材料的导电性,加快电子在ZnS和多硫离子界面的转移和传输;本发明通过化学反应载硫,降低了能耗且活性物质分散均匀。显著的有高达90%的硫负载量,极大的提高了电池的能量密度。
-
-
-
-
-
-
-
-
-