一种多孔碳基电热复合相变材料的制备方法

    公开(公告)号:CN108624295B

    公开(公告)日:2020-09-11

    申请号:CN201810662634.1

    申请日:2018-06-25

    Abstract: 本发明属于纳米复合材料和复合相变材料领域,具体涉及一种多孔碳基电热复合相变材料的制备方法。本发明以MOFs@MOFs为模板,采用原位合成的方法在含有催化金属元素(如Co,Fe,Ni)的金属有机骨架上包覆另一种金属有机骨架,通过高温煅烧的方式制备出三维碳纳米管贯穿多孔碳载体,以更好的匹配所要负载的相变芯材。所制备的复合相变材料有效的防止泄露问题,同时可有效改善有机相变材料的电导率能低的缺点,具有高电热转换效率、高循环稳定性和芯材选择范围广的优势,具有广阔的应用前景。

    一种柔性二氧化硅气凝胶基相变复合材料的制备方法

    公开(公告)号:CN107523275B

    公开(公告)日:2020-05-19

    申请号:CN201710740613.2

    申请日:2017-08-25

    Abstract: 本发明涉及一种柔性二氧化硅气凝胶基相变复合材料的制备方法,可以应用于相变领域。其制备方法是:引入三甲基甲氧基硅烷作为一种新前驱体,通过调节不同硅烷前驱体和溶剂的比例制备柔性二氧化硅气凝胶,然后选择合适的相变芯材,采用真空浸渍法,得到二氧化硅气凝胶基相变复合材料。本发明的优点在于:通过加入三甲基甲氧基硅烷改变了气凝胶内部的交联度,从而使气凝胶具有柔性;加入三甲基甲氧基硅烷使气凝胶孔隙率增加,且孔径大小可调;所制备的柔性二氧化硅气凝胶材料由于其多孔性,可以复合相变芯材制备相变复合材料;所制备的相变复合材料能够有效防止泄露问题,并且具有机械性能好、结构可调性强、负载率高等优势。

    一种钴金属有机骨架材料及其制备方法和应用

    公开(公告)号:CN111138497A

    公开(公告)日:2020-05-12

    申请号:CN201911245853.0

    申请日:2019-12-07

    Abstract: 本发明提供了一种钴金属有机骨架材料及其制备方法和应用,属于催化材料技术领域。本发明提供的钴金属有机骨架材料的制备方法,包括以下步骤:将钴源、2-硝基咪唑、苯并咪唑和有机溶剂混合后进行溶剂热反应,得到钴金属有机骨架材料。本发明以钴离子为活性中心,以2-硝基咪唑和苯并咪唑为配体,通过溶剂热反应制备钴金属有机骨架材料,所述钴金属有机骨架材料具有催化氧化硫醇的作用,能够作为催化剂应用于汽油脱硫醇中。实施例的结果显示,在无水甲醇环境中,本发明提供的钴金属有机骨架材料催化氧化硫醇的转化率可达94%,在石油醚(沸程30~60℃)环境中,硫醇的转化率可达33%。

    一种纳米粒子掺杂型光热转化复合相变材料的制备方法

    公开(公告)号:CN110437805A

    公开(公告)日:2019-11-12

    申请号:CN201910678131.8

    申请日:2019-07-25

    Abstract: 一种纳米粒子掺杂型光热转化复合相变材料的制备方法,属于复合相变材料领域。首先原位生长法,在氧化石墨烯表面原位生长金属硫化物(CuS)颗粒,得到rGO@CuS载体材料;改变氧化石墨烯的投入量,制备出石墨烯含量不同的rGO@CuS多孔载体材料;再采用溶液浸渍法,将rGO@CuS多孔载体材料分散于配制好的含有相变芯材的溶液中,利用石墨烯的超大比表面积吸附有机相变材料,在高于相变温度下,干燥得到纳米粒子掺杂型光热转化复合相变材料。本发明利用硫化铜的高光吸收能力和石墨烯的高导热系数,同时提高了有机相变材料的光热转换性能与导热性能,制备的复合相变材料光热转化性能优异、同时具有热能存储与释放能力,循环稳定性好、工艺简单、适合规模化生产。

    纳米Cu@CuO材料制备方法及其在锂离子电池中应用

    公开(公告)号:CN106531966B

    公开(公告)日:2019-06-11

    申请号:CN201611141213.1

    申请日:2016-12-12

    Abstract: 本发明公开了一种纳米Cu@CuO材料的制备方法及以纳米Cu@CuO材料为负极材料的锂离子电池,属于能源材料领域。本发明采用水热反应的方法,氢氧化钠提供碱性环境,双氧水作为氧源,通过缓慢刻蚀二维铜纳米片制备纳米Cu@CuO负极材料;本发明的优点在于方法及设备简单,工艺参数可控且条件温和,可重复性极高。制备所需原料丰富,成本低,便于规模化。此方法制备的纳米Cu@CuO负极材料具有较高的比容量及良好的循环稳定性,是一种理想的锂离子电池负极材料,可广泛应用于便携式电子设备、电动工具、空间技术以及国防工业等领域。

    二氧化钛纳米片负载MIL-100(Fe)复合光催化材料的制备及应用方法

    公开(公告)号:CN106238100B

    公开(公告)日:2018-10-19

    申请号:CN201610607408.4

    申请日:2016-07-28

    Abstract: 一种二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法,属于二氧化钛光催化领域,特别涉及二氧化钛纳米片负载多孔金属有机骨架(MOFs)复合材料领域。本发明将钛酸四丁酯和氢氟酸一起在常温下搅拌均匀,放入水热反应釜中反应,经分离、洗涤、烘干后得到二氧化钛纳米片;再将二氧化钛纳米片均匀分散在三氯化铁无水乙醇溶液中,在常温下磁力搅拌15min,经抽滤分离后将得到产物分散在均苯三甲酸无水乙醇溶液中,在50~80℃水浴反应20~50min,经抽滤分离后得到的产物,重复2~50次,得到二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料;该方法制备出的催化剂特别适用于可见光照射下催化降解高浓度有机染料(如:亚甲基蓝),达到很高的降解率。

    纳米Cu@CuO材料制备方法及其在锂离子电池中应用

    公开(公告)号:CN106531966A

    公开(公告)日:2017-03-22

    申请号:CN201611141213.1

    申请日:2016-12-12

    CPC classification number: H01M4/131 H01M4/1391 H01M10/0525

    Abstract: 本发明公开了一种纳米Cu@CuO材料的制备方法及以纳米Cu@CuO材料为负极材料的锂离子电池,属于能源材料领域。本发明采用水热反应的方法,氢氧化钠提供碱性环境,双氧水作为氧源,通过缓慢刻蚀二维铜纳米片制备纳米Cu@CuO负极材料;本发明的优点在于方法及设备简单,工艺参数可控且条件温和,可重复性极高。制备所需原料丰富,成本低,便于规模化。此方法制备的纳米Cu@CuO负极材料具有较高的比容量及良好的循环稳定性,是一种理想的锂离子电池负极材料,可广泛应用于便携式电子设备、电动工具、空间技术以及国防工业等领域。

    二氧化钛纳米片负载MIL-100(Fe)复合光催化材料的制备及应用方法

    公开(公告)号:CN106238100A

    公开(公告)日:2016-12-21

    申请号:CN201610607408.4

    申请日:2016-07-28

    Abstract: 一种二氧化钛纳米片负载MIL-100(Fe)复合光催化材料的制备及应用方法,属于二氧化钛光催化领域,特别涉及二氧化钛纳米片负载多孔金属有机骨架(MOFs)复合材料领域。本发明将钛酸四丁酯和氢氟酸一起在常温下搅拌均匀,放入水热反应釜中反应,经分离、洗涤、烘干后得到二氧化钛纳米片;再将二氧化钛纳米片均匀分散在三氯化铁无水乙醇溶液中,在常温下磁力搅拌15min,经抽滤分离后将得到产物分散在均苯三甲酸无水乙醇溶液中,在50~80℃水浴反应20~50min,经抽滤分离后得到的产物,重复2~50次,得到二氧化钛纳米片负载MIL-100(Fe)复合光催化材料;该方法制备出的催化剂特别适用于可见光照射下催化降解高浓度有机染料(如:亚甲基蓝),达到很高的降解率。

Patent Agency Ranking