-
公开(公告)号:CN113887106B
公开(公告)日:2024-04-12
申请号:CN202111182187.8
申请日:2021-10-11
Applicant: 吉林大学
IPC: G06F30/23 , G06F17/11 , G06F111/10
Abstract: 本发明涉及一种基于Chikazumi模型的感应‑磁化效应三维数值模拟方法,针对磁化率模型在时域差分离散困难,无法直接进行时域三维数值模拟的问题,将Chikazumi复磁化率模型引入频域Maxwell方程组,提出了复磁导率的矩阵运算形式,优化控制方程的计算方式,根据差分离散后磁场在网格上的位置关系,重新建立了磁导率和磁场响应的科学映射矩阵,定义了磁异常体特别的边界设置方式,实现了利用频域有限差分方法对感应‑磁化效应的三维求解。并利用正余弦变换数值滤波算法,将频域结果变换到时域,最终实现了感应‑磁化效应时域三维数值模拟。本发明目的在于,可以克服目前研究方法仅能进行感应‑磁化效应的一维数值模拟,实现对感应‑磁化效应衰减过程的三维数值模拟。
-
公开(公告)号:CN110852025B
公开(公告)日:2024-02-02
申请号:CN201911097521.2
申请日:2019-11-12
Applicant: 吉林大学
IPC: G06F30/3308 , G06F111/10
Abstract: 本发明涉及一种基于超收敛插值逼近的三维电磁慢扩散数值模拟方法,通过将复电导率模型引入频域Maxwell方程组后,电磁场扩散方程中含有复频变量的负分数次幂项,先进行频‑时变换得到含有Caputo分数阶微分项的时间域控制方程;再采用Alikhanov超收敛插值逼近方法,对电场控制方程中Caputo分数阶导数进行超收敛逼近,获得分数阶微分项的非均匀步长离散近似表达式,从而完成时间域分数阶微分项的稳定、高精度直接求解;最后基于有限差分算法对控制方程进行离散,推导出电场和磁场迭代方程,最终实现了三维时域电磁慢扩散的高精度数值模拟。本发明目的在于克服分数阶微分求解的弱奇异不稳定性及误差较大问题,实现三维时域电磁慢扩散的高精度数值模拟。
-
公开(公告)号:CN108227011B
公开(公告)日:2023-07-07
申请号:CN201810105902.X
申请日:2018-02-02
Applicant: 吉林大学
IPC: G01V3/08
Abstract: 本发明涉及瞬变电磁发射领域,具体为一种可控下降沿的双梯形波发射系统和控制方法。所述系统包括:主控电路、光耦驱动电路、发射桥路、高压瞬态抑制二极管、低压瞬态抑制二极管电路、串联电池组以及发射线圈,其中:所述主控电路通过光耦驱动与发射桥路连接,发射桥路和发射线圈连接;串联电池组与发射桥路连接为发射提供电力,高压瞬态抑制二极管、低压瞬态抑制二极管电路并联在发射线圈两端。本发明能够同时产生一组不同关断时间的梯形波发射电流,分别用于激励和测量感应场信号和极化响应,实现电阻率与极化率双参数同时探测,提高了探测精度。
-
公开(公告)号:CN116243389A
公开(公告)日:2023-06-09
申请号:CN202211661862.X
申请日:2022-12-23
Applicant: 吉林大学
IPC: G01V3/10
Abstract: 本发明属于一种针对极化效应的半正弦波电磁发射系统及方法,适用于电磁法地球物理勘探领域,尤其适用于对极化效应的激励及测量,该系统包括RLC串联谐振电路,以及供电电源,所述供电电源采用大容量有极性电容或逆变桥路输出的双极性电源,分别用于产生磁性源半正弦波和电性源半正弦波。通过输出半正弦波,延长发射电流关断时间,解决现有的延长能力不足,造成的瞬变电磁法对极化介质探测精度低的问题,提高测量极化效应的信噪比。
-
公开(公告)号:CN113887106A
公开(公告)日:2022-01-04
申请号:CN202111182187.8
申请日:2021-10-11
Applicant: 吉林大学
IPC: G06F30/23 , G06F17/11 , G06F111/10
Abstract: 本发明涉及一种基于Chikazumi模型的感应‑磁化效应三维数值模拟方法,针对磁化率模型在时域差分离散困难,无法直接进行时域三维数值模拟的问题,将Chikazumi复磁化率模型引入频域Maxwell方程组,提出了复磁导率的矩阵运算形式,优化控制方程的计算方式,根据差分离散后磁场在网格上的位置关系,重新建立了磁导率和磁场响应的科学映射矩阵,定义了磁异常体特别的边界设置方式,实现了利用频域有限差分方法对感应‑磁化效应的三维求解。并利用正余弦变换数值滤波算法,将频域结果变换到时域,最终实现了感应‑磁化效应时域三维数值模拟。本发明目的在于,可以克服目前研究方法仅能进行感应‑磁化效应的一维数值模拟,实现对感应‑磁化效应衰减过程的三维数值模拟。
-
公开(公告)号:CN113553773A
公开(公告)日:2021-10-26
申请号:CN202110934336.5
申请日:2021-08-16
Applicant: 吉林大学
IPC: G06F30/27 , G06F17/18 , G06N3/04 , G06N3/08 , G06F111/10
Abstract: 本发明涉及一种基于贝叶斯框架结合神经网络的地空电磁数据反演方法。获取探测区域地质资料,提取地下介质模型参数的先验信息,求出能够表明模型参数和噪声的先验分布以及实测数据与未知模型参数之间的似然函数,进而表示模型参数的后验分布。基于先验样本建立神经网络替代模型;利用马尔科夫链蒙特卡罗采样方法,通过对替代模型得到的后验分布采样得到样本,当采样一定数量样本后检验替代模型精度,若替代模型精度不足则更新低保真模型得到高保真模型,然后再利用高保真模型采样。最后对实测数据求解各参数的后验概率密度并求平均值,对结果成像并分析,获取地下介质信息。本发明有利于电磁探测技术的实用化。
-
公开(公告)号:CN112526621B
公开(公告)日:2021-10-22
申请号:CN202011472935.1
申请日:2020-12-15
Applicant: 吉林大学
Abstract: 本发明涉及一种基于神经网络的地空电磁数据慢扩散多参数提取方法,根据电磁慢扩散现象建立慢扩散分数阶模型;将分数阶电导率表达式代入麦克斯韦方程,构建电磁场分数阶扩散方程,推导电性源地空电磁响应公式;在获取测区地质资料基础上,构建不同慢扩散参数、电导率的慢扩散分数阶模型,并计算地空电磁响应,形成样本数据集;优化选取神经网络的网络结构参数和训练函数,建立神经网络;对实测地空电磁数据进行预处理后,应用神经网络提取地下介质多参数信息;最后实现多参数结果进行成像。本发明的目的在于构建慢扩散分数阶模型,实现地空电磁慢扩散数据的高精度多参数提取,与传统电导率成像方法相比,多参数成像结果更接近实际地下介质。
-
公开(公告)号:CN113406709A
公开(公告)日:2021-09-17
申请号:CN202110834698.7
申请日:2021-07-23
Applicant: 吉林大学
Abstract: 本发明涉及一种基于高泛化神经网络的地空电磁数据反演方法,依据反常扩散分数阶模型,计算地空电磁响应,建立电磁响应与反常扩散分数阶模型的样本集;优化设计网络结构、选取训练函数、激活函数;限制每个参数矩阵为对角矩阵且Frobenius规范最多为1,采用秩为1矩阵替换秩接近1的参数矩阵,获得由深度r'网络和单变量函数组成的近似神经网络;对单变量函数的Lipschitz函数,所有输入0映射到固定输出;通过的实值损失函数限制神经网络的Rademacher复杂度,限制神经网络的泛化误差上界,获取高泛化神经网络;采用高泛化神经网络对地空电磁数据进行反演,并进行成像。本发明提高了反常扩散多参数的解释准确性。
-
公开(公告)号:CN112285788B
公开(公告)日:2021-09-14
申请号:CN202011180385.6
申请日:2020-10-29
Applicant: 吉林大学
Abstract: 本发明涉及一种基于电磁波动方程的CPML吸收边界条件加载方法,采用电磁波动方程作为控制方程并基于有限差分方法进行数值模拟,将整个计算区域分为中心区域和边界区域;在中心区域,求解三维电磁波动方程,得到中心区磁场垂直分量波场;在边界区域,将复拉伸变量代入频率域电磁波动方程,采用CPML吸收边界条件设置复拉伸变量,并将其表达式代入控制方程中,进行整理并频时变换,最后基于有限差分算法进行离散近似,得到边界区磁场垂直分量波场;将中心区和边界区波场叠加获得最终的波场。本发明目的在于克服电磁数值模拟时计算效率低及晚期反射误差大等问题,实现三维时域电磁响应的高效、高精度数值模拟。
-
公开(公告)号:CN112698410A
公开(公告)日:2021-04-23
申请号:CN202011489543.6
申请日:2020-12-16
Applicant: 吉林大学
Abstract: 本发明涉及一种电性源双相导电介质感应‑极化共生时域电磁探测方法,建立感应‑极化共生效应的双时间尺度分数阶电导率模型;建立双时间分数阶电磁场扩散方程,采用分数阶时域有限差分方法,直接求解电导率模型中双(iω)‑c负分数阶项,实现双时间尺度的感应‑极化共生效应数值模拟;分析感应‑极化共生效应特征,构建双可控沿梯形波发射靶向激励关系;基于超导传感器的单磁场高精度感知系统测量感应‑极化共生效应;对接收数据进行预处理,采用优化粒子群算法进行极化率、电导率等多参数智能提取和成像。本发明的目的在于表征双相导电介质的非线性特征,构建感应‑极化共生效应的电导率模型,实现单磁场测量双相导电介质感应‑极化共生效应的高精度探测。
-
-
-
-
-
-
-
-
-