-
公开(公告)号:CN101250061B
公开(公告)日:2010-06-02
申请号:CN200810064204.6
申请日:2008-03-31
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/80 , C04B35/622
Abstract: 氧化锆增韧硼化物超高温陶瓷基复合材料的制备方法,它涉及一种硼化物超高温陶瓷基复合材料的制备方法。它解决了现有硼化物超高温陶瓷基复合材料韧性差的问题。制备方法如下:一、将硼化物粉末、碳化硅颗粒和氧化钇部分稳定氧化锆颗粒混合;二、将混合物进行超声波清洗,然后球磨混合再烘干;三、烘干后的混合物经保温烧结,冷却至室温取出,即得氧化锆增韧硼化物超高温陶瓷基复合材料。本发明制备工艺简单、成本低,所得材料的韧性值高达6.0~6.8MPa·m1/2。
-
公开(公告)号:CN101550004A
公开(公告)日:2009-10-07
申请号:CN200910071943.2
申请日:2009-05-04
Applicant: 哈尔滨工业大学
IPC: C04B35/52 , C04B35/622
Abstract: 一种石墨-碳化锆抗氧化烧蚀型材料及其制备方法,它涉及一种石墨材料及其制备方法。它解决了现有石墨材料高温下易氧化以及经过浸渍和喷涂处理后的石墨材料致密低的问题。石墨-碳化锆抗氧化烧蚀型材料由氧化锆粉末和石墨粉末制成。方法:一、称取原料,球磨湿混后得浆料;二、浆料烘干后研磨,得混合粉料;三、混合粉料在真空条件下热压烧结,随炉冷却后取出,即得石墨-碳化锆抗氧化烧蚀型材料。本发明中石墨-碳化锆抗氧化烧蚀型材料的质量损失率小于现有石墨材料,耐高温性能好,高温下不易氧化,突破了现有石墨材料在450℃以下使用的温度限制,其使用温度显著地提高到了1200~2200℃,致密度大于90%,且力学性能也提高了。
-
公开(公告)号:CN120056500A
公开(公告)日:2025-05-30
申请号:CN202510236382.6
申请日:2025-02-28
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种超轻质纤维化骨架材料预刚化/强化成型模具,属于防隔热材料技术领域,该模具包括压头组件和腔体;压头组件包括设置在腔体内部的压头、贯穿腔体顶端与压头连接的压滤杆和套合在压滤杆上的弹性部件;压滤杆的一端与压头连接,另一端设置有控制压头移动的推动部件;腔体的顶端为可拆卸结构,底端为开口设计;腔体的顶端设置有用于限制弹性部件位置的第一限位部件;腔体的侧壁设置有侧漏孔;腔体的内部设置有与腔体内壁相匹配的可拆卸漏板和用于支撑可拆卸漏板的支架;可拆卸漏板设置有下漏孔。本发明提供的模具操作灵活、简单、排液效率高、成型稳定性好,可制得厚度稳定、可控的短切纤维骨架湿坯。
-
公开(公告)号:CN118852717B
公开(公告)日:2025-04-25
申请号:CN202410850229.8
申请日:2024-06-28
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种表层密度可控的防隔热梯度化复合材料及其制备方法。所述方法:将热熔型酚醛树脂、陶瓷化填料和溶剂在40~90℃下混匀,将得到的预混物用涂布机涂覆在离型纸上,得到混合膜;将混合膜铺覆在纤维预制体的一面并利用真空袋压工艺使混合膜浸渍入纤维预制体内;重复该步骤,直至纤维预制体内浸渍的预混物达到预设的浸渍厚度;将完成浸渍后的纤维预制体在100~200℃下固化处理,得到表层密度可控的纤维预制体;用酚醛树脂溶液浸渍表层密度可控的纤维预制体,再依次经溶胶‑凝胶、溶剂置换和常压干燥,制得表层密度可控的防隔热梯度化复合材料。本发明制备的材料兼具优异的隔热性能和抗烧蚀性能,在热防护领域有很大应用前景。
-
公开(公告)号:CN118851194B
公开(公告)日:2025-04-15
申请号:CN202410850213.7
申请日:2024-06-27
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种抗氧化耐烧蚀SiBONC气凝胶及其制备方法,该方法包括:(1)将硅烷类助溶剂、醇溶剂和改性剂搅拌混匀,得到混合溶液;其中,所述改性剂为含有硼元素的化合物,所述硅烷类助溶剂为含有氮元素的硅烷类助溶剂;(2)向所述混合溶液中加入交联剂和水,反应后得到反应溶液;(3)将所述反应溶液依次进行固化和干燥,得到所述抗氧化耐烧蚀SiBONC气凝胶。本发明中利用含有氮元素的硅烷类助溶剂与改性剂之间的配位作用,从而将大量的硼元素引入气凝胶中实现气凝胶的改性,如此使得制备得到的气凝胶具有较好的抗氧化性、耐烧蚀性和力学性能。
-
公开(公告)号:CN119175932A
公开(公告)日:2024-12-24
申请号:CN202411431534.X
申请日:2024-10-14
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种隔声隔热一体化酚醛气凝胶穿孔板复合材料及其制备方法。所述方法:将酚醛树脂、造孔剂和固化剂混合均匀,得到酚醛气凝胶前驱体;将一块纤维织物置于酚醛气凝胶前驱体中进行浸渍,然后经固化、溶剂置换和真空干燥,得到纤维增强酚醛气凝胶复合材料;在纤维增强酚醛气凝胶复合材料上穿孔,然后将另一块纤维织物粘接在穿孔后的纤维增强酚醛气凝胶复合材料的背面,制得隔声隔热一体化酚醛气凝胶穿孔板复合材料。本发明通过将纤维增强酚醛气凝胶复合材料穿孔,并与纤维织物结合,制备出了在全频段具有优良降噪性能以及隔热性能的复合材料;本发明将穿孔板与多孔材料结合,兼具了穿孔板的低频降噪性能以及多孔材料的高频降噪性能。
-
公开(公告)号:CN119059814A
公开(公告)日:2024-12-03
申请号:CN202411183600.6
申请日:2024-08-27
Applicant: 哈尔滨工业大学
IPC: C04B35/50 , C04B38/00 , C04B35/624 , G21C15/00
Abstract: 本发明涉及一种萤石衍生结构氧化物气凝胶及其制备方法与应用,属于功能材料技术领域。为解决传统氧化物气凝胶无法长时间在高温、高辐射环境中稳定服役的问题,本发明提供了一种萤石衍生结构氧化物气凝胶,气凝胶的晶体结构为A2B7O17,其中A为稀土元素,B为过渡族金属元素。本发明气凝胶经过高温热处理,反应活性降低,能够减少高温环境下使用时发生孔结构坍塌与体积收缩;气凝胶中萤石衍生晶体结构能够在核辐射环境下吸收中子保持完整的宏/微观形貌,使其能够作为一种高效隔热材料在核反应堆高温、强辐射环境下高稳定性与长时间服役,拓宽了氧化物气凝胶的应用,在核反应堆隔热材料领域具有广阔的应用前景。
-
公开(公告)号:CN118637937B
公开(公告)日:2024-11-29
申请号:CN202410830366.5
申请日:2024-06-25
Applicant: 哈尔滨工业大学
IPC: C04B35/83 , C04B35/84 , C04B35/82 , C04B35/80 , C04B35/624 , C04B35/524 , B01J13/00 , C04B38/00
Abstract: 本发明涉及一种耐烧蚀隔热碳气凝胶复合材料的制备方法。所述方法为:碳气凝胶复合材料的制备;将酚醛树脂、酚醛气凝胶粉末、分散剂和溶剂混合均匀,得到酚醛溶液,用酚醛溶液浸渍碳气凝胶复合材料后静置,再在400~600℃下预碳化处理;将酚醛树脂、固化剂、溶剂和分散剂混合均匀,得到修复溶液,用修复溶液一次浸渍预处理的碳气凝胶复合材料,然后进行超声处理与二次浸渍,最后依次进行凝胶、老化和碳化,重复该步骤2~5次,实现对碳气凝胶复合材料的纳米修复,制得耐烧蚀隔热碳气凝胶复合材料。本发明对传统碳气凝胶复合材料进行了微观结构优化,通过纳米修复制备工序,获得了密度低、隔热性好、烧蚀率低的耐烧蚀隔热碳气凝胶复合材料。
-
公开(公告)号:CN118810075A
公开(公告)日:2024-10-22
申请号:CN202410812367.7
申请日:2024-06-21
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及航空航天技术领域,特别涉及一种针对回转体防隔热纤维复合材料的制备方法及装置。该制备方法,包括:S1,根据回转体结构制备与其外形尺寸匹配的纤维毡,将纤维毡固定在转动装置上;S2,将陶瓷化胶膜铺覆在纤维毡表面;S3,利用真空袋和密封胶条包裹陶瓷化胶膜,并抽真空,得到由内到外依次为转动装置、纤维毡、陶瓷化胶膜和真空袋的待处理结构;S4,将待处理结构置于加热装置中,利用转动装置转动待处理结构,利用加热装置加热待处理结构,在纤维毡外表面得到致密抗烧蚀层;S5,在纤维毡内表面制备酚醛气凝胶隔热层。本发明实施例提供的制备方法及装置,能够实现纤维增强复合材料梯度化结构的可控制备和均匀分布。
-
公开(公告)号:CN117756445A
公开(公告)日:2024-03-26
申请号:CN202311796442.7
申请日:2023-12-25
Applicant: 哈尔滨工业大学
IPC: C04B26/12 , C04B111/28
Abstract: 本发明提供了一种柔性酚醛/硅复合气凝胶烧蚀热防护复合材料及其制备方法,属于复合材料技术领域,所述烧蚀热防护复合材料包括纤维增强体和柔性酚醛气凝胶基体;所述纤维增强体为纤维表面均匀分布有二氧化硅颗粒的纤维预制体;所述柔性酚醛气凝胶基体为网状结构酚醛气凝胶。本发明提供的烧蚀热防护复合材料兼具优异的柔性和抗氧化烧蚀性能,可适用于变体飞行器的可变形/可展开的大曲率面热防护系统,有效地拓宽了其应用范围。
-
-
-
-
-
-
-
-
-