一种纤维增强树脂基复合材料相控阵超声检测晶片延迟法则优化方法

    公开(公告)号:CN105044213A

    公开(公告)日:2015-11-11

    申请号:CN201510386212.2

    申请日:2015-06-28

    Abstract: 一种纤维增强树脂基复合材料相控阵超声检测晶片延迟法则优化方法,属于超声检测技术领域。该方法包括以下步骤:测量试样的密度、纵波声速和弹性刚度矩阵;分别建立材料为各向同性和考虑纤维铺排方向的各向异性超声检测模型;利用各向同性模型计算相控阵超声检测晶片延时,获得实际检测所用晶片延迟法则;基于各向异性模型计算对应的晶片延时,实现对上述晶片延迟法则的优化。本方法在声学建模基础上提出了纤维增强树脂基复合材料相控阵超声检测晶片延迟法则优化方法,考虑了材料各向异性对声传播的影响,提高了声束聚焦效果,为研究纤维增强树脂基复合材料中声传播规律、改进检测工艺、提高缺陷检测能力提供支持。

    基于声压反射系数功率谱测量超声在薄层介质中往返时间的方法

    公开(公告)号:CN102607479B

    公开(公告)日:2014-04-02

    申请号:CN201210051117.3

    申请日:2012-02-29

    Abstract: 一种基于声压反射系数功率谱测量超声在薄层介质中往返时间的方法,属于材料超声无损检测与评价技术领域。该方法使用脉冲超声水浸回波系统采集一个由水与薄层上表面组成界面的反射回波信号和水与薄层下表面组成界面的反射回波信号组成的混叠信号,再采集一个标准试块的上表面回波信号。然后分别对采集到的信号进行FFT,进一步处理得到声压反射系数功率谱。接着从功率谱的幅度谱中读出各余弦分量对应的δ脉冲的横坐标,即为超声在薄层中的各次往返时间。本方法克服了由于超声回波信号带宽不能覆盖薄层声压反射系数幅度谱中相邻两极小值而不能确定超声在薄层中往返时间的问题,所用的设备简单、可操作性强、测量精度高,重复性好。

    建立铸造奥氏体不锈钢等轴晶声学特性计算模型的方法

    公开(公告)号:CN103344699A

    公开(公告)日:2013-10-09

    申请号:CN201310224387.4

    申请日:2013-06-07

    Abstract: 本发明涉及粗晶奥氏体材料的无损检测领域。为提高铸造奥氏体不锈钢的等轴晶声学特性计算模型的仿真精度,降低建模成本,本发明提出一种建立铸造奥氏体不锈钢等轴晶声学特性计算模型的方法,取试样并统计晶粒平均直径d实;进行超声检测并计算声速和衰减系数;建立模拟检测模型,等轴晶晶粒模型的平均直径d模=d实,设定等轴晶晶粒模型的晶界和晶内弹性参数,密度ρ晶界和ρ晶内,ρ晶界=ρ晶内,拉梅常数λ晶界和λ晶内及μ晶界和μ晶内,λ晶界≠λ晶内或μ晶界≠μ晶内;进行仿真实验,计算声速误差Δv和衰减系数误差Δα,Δv和/或Δα大于或等于5%时,修正参数,至Δv和Δα均小于5%,建模完成。该方法建立的模型仿真精度高,建模成本低。

    基于压电阻抗法的热障涂层热生长氧化层无损检测方法

    公开(公告)号:CN102353700A

    公开(公告)日:2012-02-15

    申请号:CN201110179939.5

    申请日:2011-06-30

    Abstract: 一种基于压电阻抗法的热障涂层热生长氧化层无损检测方法,属于材料无损检测与评价技术领域。该系统由阻抗分析仪、压电晶片、涂层试样、计算机等组成。首先利用强力胶将压电晶片固定到涂层试样待检测部位,焊接导线并校正阻抗分析仪。然后利用阻抗分析仪在兆赫级频带内,对压电晶片进行电阻抗模值信号测量,根据测量结果选取谐振峰分布集中的频带作为检测频段,确定采样点数和采样频率。在选定的检测频段内对氧化前后的涂层试样分别进行电阻抗模值信号测量。最后根据电阻抗信号测量结果,计算出氧化损伤识别指数RMSD,对形成热生长氧化层进行判定。本方法具有100%无损检测的优点,成本低,效率高,操作方便,易于实用化,具有较大的经济效益和社会效益。

    一种基于三重阵列信号的未知不规则缺陷成像检测方法

    公开(公告)号:CN117705945A

    公开(公告)日:2024-03-15

    申请号:CN202311698795.3

    申请日:2023-12-12

    Abstract: 本发明公开了一种基于三重阵列信号的未知不规则缺陷成像检测方法,属于无损检测技术领域。采用由相控阵超声检测仪、扫查器、两个完全一致的相控阵探头和匹配楔块构成的检测系统;将两个相控阵探头连接扫查器,对称放置于待检测区域两侧,独立移动探头并在三种信号采集模式下获取具有较强缺陷响应的全矩阵数据;针对各重建点,筛选7种模式波实施延时叠加复合成像;分别提取三组复合图像中各重建点最大与最小幅值进行归一化处理,对于每个重建点,选取三重归一化图像中较高幅值作为该点的最终幅值,从而实现先验未知不规则缺陷的轮廓重建与成像表征。该方法可直观辨识缺陷特征,且定量精度较高,具有较好的工程应用前景。

    一种基于稀疏矩阵的超声频域全聚焦方法

    公开(公告)号:CN115856101A

    公开(公告)日:2023-03-28

    申请号:CN202211522440.4

    申请日:2022-11-30

    Abstract: 本发明提供了一种基于稀疏矩阵的超声频域全聚焦方法,属于无损检测领域。使用由相控阵探头采集到的全矩阵信号作为原始数据,依次计算单发全收阵列信号加权幅值,结合探头中心频率、采样频率、阵元数目和间距构建稀疏系数,根据权重筛选稀疏阵列并实施傅里叶变换;利用横向和纵向波数计算迁移因子,得到不同深度下的外推波场,获得加权全聚焦子图像;对各稀疏阵列对应子图像进行线性叠加与平均,最终实现检测区域内的超声成像。该方法使用较少数据量进行全聚焦成像,在保证成像质量的同时具有更快成像效率,具有一定的实时化全聚焦应用前景。

    基于相控阵-临界折射纵波的各向异性材料损伤评价方法

    公开(公告)号:CN115200755A

    公开(公告)日:2022-10-18

    申请号:CN202210902136.6

    申请日:2022-07-29

    Abstract: 基于相控阵‑临界折射纵波的各向异性材料损伤评价方法,属于材料无损检测与评价领域。该方法包括以下步骤:在试样表面某一方向激励临界折射纵波,建立激励声速和临界折射纵波幅值关系曲线,获取最优激励声速;以其计算相控阵超声延迟法则,沿试样不同方向激励临界折射纵波并测量幅值;对临界折射纵波进行连续小波变换,计算不同方向临界折射纵波声速;获取不同损伤程度下试样某一方向激励声速和临界折射纵波幅值关系曲线,以及临界折射纵波幅值和声速变化曲线;建立最高幅值和最优激励声速、某一方向临界折射纵波幅值和声速与损伤程度的对应关系。该方法解决了材料声学特性随方向、损伤状态变化带来的评价难题,显著提高评价灵敏度和效率。

    基于阵列超声信号幅值和相位特征加权的缺陷定性检测方法

    公开(公告)号:CN113552218B

    公开(公告)日:2022-09-06

    申请号:CN202110803987.0

    申请日:2021-07-16

    Abstract: 一种基于阵列超声信号幅值和相位特征加权的缺陷定性检测方法,其属于无损检测技术领域。该方法采用相控阵超声检测仪、相控阵超声探头和楔块构成的检测系统,采集包括直接、半跨和全跨模式在内的21种模式波的全矩阵数据;针对待检测区域的每个重建点,同时考虑阵列超声信号中各模式波的幅值和相位特征,分别对21种模式波实施延时叠加处理并筛选最强能量;在此基础上,提取相位信息进行加权成像,给出待测缺陷轮廓特征,从而实现弹性各向异性与各向同性材料中缺陷的定性辨识。该方法可对未知的面积型缺陷和体积型缺陷进行轮廓重建,缺陷判读直观,且定性和定量检测结果准确,具有较广阔工程应用前景。

    一种基于复合模式全聚焦的裂纹形貌重建方法

    公开(公告)号:CN111855809B

    公开(公告)日:2022-07-26

    申请号:CN202010696063.0

    申请日:2020-07-20

    Abstract: 一种基于复合模式全聚焦的裂纹形貌重建方法,其属于无损检测技术领域。该方法采用相控阵超声检测仪、相控阵超声探头和倾斜楔块构成的相控阵超声检测系统,利用相控阵全矩阵捕捉模块采集包括21种模式波的A扫描信号矩阵;基于费马定理,计算21种模式波在楔块与被检试块界面处的折射点位置,得到被检区域内每种模式波的幅值信号;针对每一个重建点从上述21种模式波中选择能量最强信号;最后,通过复合叠加实现不同取向裂纹的形貌重建。该方法能够利用一套探头楔块组合,通过一次信号采集实现不同取向裂纹形貌重建,进而对裂纹长度、深度和取向精确定量;该方法可嵌入到探伤仪中,实现未知取向裂纹检出与定量,具有较高工程应用前景。

    一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法

    公开(公告)号:CN113552217B

    公开(公告)日:2022-05-10

    申请号:CN202110803961.6

    申请日:2021-07-16

    Abstract: 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法,其属于无损检测技术领域。该方法采用由相控阵超声检测仪、两个相控阵探头和匹配楔块构成的检测系统,从待检测区域两侧分别采集全矩阵信号;针对各重建点,从两组全矩阵信号中分别选取具有最大声程的全跨模式进行不同模式波的扩散校正;最后实施延时叠加处理,并复合两侧具有最强响应的模式波,从而实现未知缺陷的轮廓重建与定量检测。该方法可重建先验未知的体积型缺陷,以及规则和不规则面积型缺陷轮廓,缺陷特征辨识直观,且定量检测精度较高,具有较好的工程应用前景。

Patent Agency Ranking