-
公开(公告)号:CN113917761A
公开(公告)日:2022-01-11
申请号:CN202111114356.4
申请日:2021-09-23
Abstract: 本发明公开了一种基于角度无惯性反馈校正的光束稳定装置,该装置包括反射镜、中空回射器、纳米位移台、三角棱镜、声光偏转器、分束镜、透镜、位置探测器和控制器等部件。本发明利用了基于声光偏转器的非机械式的控制方法替代以往系统中机械控制方式,避免惯性误差的影响,减小环境噪声的干扰。并且利用了声光偏转器的高响应频率(可以达到1MHz以上)的优势,实现快速、高精度的光束角度漂移校正。利用本发明方法与装置调整得到的稳定光束,可以广泛用于超分辨显微成像系统和高精度激光直写光刻系统。
-
公开(公告)号:CN119199812B
公开(公告)日:2025-03-11
申请号:CN202411698278.0
申请日:2024-11-26
Applicant: 之江实验室
Abstract: 本申请涉及一种声纳回波信号存储方法、装置和存储介质,其中,该方法包括:获取多个声纳回波信号,将每一信号划分为多个信号子域;提取各信号子域中的有效数据密度值,基于有效数据密度值,从多个信号中确定待压缩信号;将待压缩信号划分为多个信号子块;确定信号子块中的目标子块,以及信号子块中与目标子块相邻的相邻子块;根据相邻子块对目标子块所在的点位信号进行预测处理,得到预测块;基于目标子块和预测块,确定残差块数据;根据残差块数据和目标子块,生成压缩数据并进行存储。通过本申请,解决了在深海探测场景下高通量声呐回波信号数据量大、存储效率低的问题,提高了数据压缩比率和存储效率,同时保证了信号恢复质量。
-
公开(公告)号:CN119270581A
公开(公告)日:2025-01-07
申请号:CN202411797928.7
申请日:2024-12-09
Applicant: 之江实验室
Abstract: 本发明公开了一种基于双光子吸收效应的成像方法和装置,其方法包括:(1)在样品中引入具有双光子吸收特性的光敏物质;(2)使用飞秒激光对样品进行精确聚焦,通过双光子吸收诱导微纳结构的形成;(3)对样品进行清洗,去除未反应的光敏物质,并使其风干;(4)将处理后的样品放回样品台,再次使用飞秒激光聚焦于样品上,激发双光子发光,接收荧光并汇聚至探测器,实现微纳结构的超分辨显微成像。本发明利用光敏物质的双光子聚合特性和荧光发光特性,可实现微纳结构的形成并对其进行成像,无需在样品中额外掺杂染料,简化了样品的材料成分。此外,本发明可利用同一飞秒激光同时实现超分辨结构构建与成像,有效简化了系统。
-
公开(公告)号:CN113985707B
公开(公告)日:2023-08-04
申请号:CN202111241114.1
申请日:2021-10-25
Applicant: 之江实验室
IPC: G03F7/20
Abstract: 本发明公开一种可控脉冲展宽与延时的超分辨激光直写装置及方法,该装置包括飞秒激光光源、二分之一波片、偏振分光棱镜、脉冲展宽器、能量调制器、相位板、直角棱镜、反射镜等部件。本发明将飞秒光源出射的飞秒光束分成两束光,对其中一束进行脉冲展宽与光强分布的调制,然后将两束光合束后入射到刻写系统,实现同波长的基于边缘光抑制的激光刻写。利用本发明的装置可以得到一束强度分布为高斯的飞秒光束和一束可调脉冲宽度、可调光强分布的光束,并且可以通过调控光程来精细调控分束后的两个光束达到刻写样品上的时间,精度可达皮秒量级,可用于高精度激光直写光刻系统。
-
公开(公告)号:CN117310850A
公开(公告)日:2023-12-29
申请号:CN202311223277.6
申请日:2023-09-21
Applicant: 之江实验室
IPC: G02B3/00
Abstract: 本申请涉及一种灰度刻写方法、装置、计算机设备以及存储介质。根据激光光源射出的激光光束确定光栅光阀的入射光斑;通过所述光栅光阀的子单元对所述入射光斑进行相位调制,确定子单元的一级衍射光场;根据所述子单元的一级衍射光场确定刻写线光场;通过道威棱镜带动所述刻写线光场旋转,确定旋转光场;根据微透镜的曲面结构,确定所述刻写线光场的目标光强分布梯度;根据所述旋转光场、所述刻写线光场和所述目标光强分布梯度对微透镜进行灰度刻写。上述方法能够提高微透镜的加工效率,同时提高微透镜的光洁度。
-
公开(公告)号:CN114779591A
公开(公告)日:2022-07-22
申请号:CN202210717492.0
申请日:2022-06-23
Applicant: 之江实验室
IPC: G03F7/20
Abstract: 本发明公开了一种基于双色双步吸收效应的超分辨光刻方法,该方法基于苯偶酰光引发剂基态与三重态的光谱吸收特性,利用一束材料基态吸收范围波长的激光束与另一束材料三重态吸收范围波长的激光束共同作用于材料中,通过控制两者的能量实现双色双步吸收效应,并且结合两者的相对位移控制,从而获得小于衍射极限的刻写线宽。本发明将提供一种亚百纳米精度刻写精度与快速刻写能力的超分辨纳米激光直写方法,使三维光刻直写技术具有高速、超分辨、复杂结构刻写能力的优点。
-
公开(公告)号:CN119270581B
公开(公告)日:2025-05-13
申请号:CN202411797928.7
申请日:2024-12-09
Applicant: 之江实验室
Abstract: 本发明公开了一种基于双光子吸收效应的成像方法和装置,其方法包括:(1)在样品中引入具有双光子吸收特性的光敏物质;(2)使用飞秒激光对样品进行精确聚焦,通过双光子吸收诱导微纳结构的形成;(3)对样品进行清洗,去除未反应的光敏物质,并使其风干;(4)将处理后的样品放回样品台,再次使用飞秒激光聚焦于样品上,激发双光子发光,接收荧光并汇聚至探测器,实现微纳结构的超分辨显微成像。本发明利用光敏物质的双光子聚合特性和荧光发光特性,可实现微纳结构的形成并对其进行成像,无需在样品中额外掺杂染料,简化了样品的材料成分。此外,本发明可利用同一飞秒激光同时实现超分辨结构构建与成像,有效简化了系统。
-
-
-
公开(公告)号:CN118192179B
公开(公告)日:2024-08-06
申请号:CN202410615551.2
申请日:2024-05-17
Applicant: 之江实验室
Abstract: 本发明涉及一种激光直写装置、激光直写方法及超构透镜,沿光路传播方向依次包括光源、数字微镜阵列、锥透镜以及刻写平台,所述数字微镜阵列的数量与所述锥透镜的数量相同,以使所述数字微镜阵列和所述锥透镜一一对应。本发明通过改变数字微镜阵列中处于打开状态的子微镜分布、数量,由此能够改变在锥透镜出光侧所形成焦点区域对应的焦深,以及焦点区域在x方向和y方向上对应的宽度,由此改变获得的柱体高度和半径。
-
-
-
-
-
-
-
-
-