基于异质模型拟合的运动分割方法

    公开(公告)号:CN112308877B

    公开(公告)日:2022-05-17

    申请号:CN202011165026.3

    申请日:2020-10-27

    Applicant: 厦门大学

    Abstract: 基于异质模型拟合的运动分割方法,涉及计算机视觉技术。首先,使用基于密度估计技术的投票方法,通过对异质模型假设质量的评价,生成高质量的累积相关矩阵。在此基础上,利用信息论构造稀疏亲和矩阵的方法,有效地抑制了不同目标之间的关联值。最后,利用归一化谱聚类算法对融合后的稀疏亲和矩阵进行分割,得到准确的分割结果。解决现有技术存在的真实场景中外界的光照变化、运动物体的表观和遮挡,可能会导致跟踪点包含异常值和噪声等问题。

    一种基于双分支干扰分离网络的人脸表情识别方法

    公开(公告)号:CN113239833A

    公开(公告)日:2021-08-10

    申请号:CN202110551957.5

    申请日:2021-05-20

    Applicant: 厦门大学

    Abstract: 一种基于双分支干扰分离网络的人脸表情识别方法,涉及计算机视觉技术。提供可以处理表情图像中多种干扰因素的一种基于双分支干扰分离网络的人脸表情识别方法。首先设计一个双分支网络来分开学习表情特征和干扰特征,再根据干扰特征的不同类型在干扰分支中设计标签感知子分支和无标签子分支。在标签感知子分支中,利用辅助数据集的标签信息和迁移学习的方式学习常见干扰特征。在无标签子分支中,引入印度自助餐过程理论学习潜在干扰特征。最后,通过对抗学习,进一步分离干扰特征和表情特征,从而获得更有判别力的表情特征进行分类预测,有效地提升表情识别的性能。

    基于多任务多标签学习卷积神经网络的人脸属性识别方法

    公开(公告)号:CN110443189B

    公开(公告)日:2021-08-03

    申请号:CN201910704048.3

    申请日:2019-07-31

    Applicant: 厦门大学

    Abstract: 基于多任务多标签学习卷积神经网络的人脸属性识别方法,涉及计算机视觉技术。首先采用多任务学习,同时学习人脸关键点检测和人脸属性识别两个任务;考虑不同属性的学习难度和学习收敛速度不同,将属性分为主观属性和客观属性,采用动态权重和自适应阈值策略来加快网络的收敛速度和缓解样本不平衡问题;最终根据训练好的网络模型,将主观属性和客观属性子网络的人脸属性识别结果作为最终的人脸属性识别结果。使用动态权重方案和自适应阈值调整,加快网路收敛速度的同时可缓解标签不平衡问题;采用空间金字塔池化的方法训练三个不同的子网络,达到了端到端的训练进行多任务多人脸属性识别。提高人脸属性识别的精度,尤其是难度较大的主观属性。

    基于多尺度生成对抗网络的遮挡行人重识别方法

    公开(公告)号:CN110135366B

    公开(公告)日:2021-04-13

    申请号:CN201910418070.1

    申请日:2019-05-20

    Applicant: 厦门大学

    Abstract: 基于多尺度生成对抗网络的遮挡行人重识别方法,涉及计算机视觉技术。准备行人图像训练集;设计和训练一个多尺度生成对抗网络,该网络包括多尺度生成器和判别器两部分,其中,多尺度生成器能够对随机遮挡区域进行去遮挡操作,生成高质量的重构图;而判别器能够区分输入图像是真实图像还是生成图像;利用训练好的多尺度生成器产生扩充的行人图像训练集;设计和训练一个分类识别网络,该网络用于对输入的行人图像进行身份分类;利用训练好的分类识别网络提取行人图像的特征并进行相似度匹配。

    一种基于深度学习的实时高性能街景图像语义分割方法

    公开(公告)号:CN110188817B

    公开(公告)日:2021-02-26

    申请号:CN201910452356.1

    申请日:2019-05-28

    Applicant: 厦门大学

    Abstract: 一种基于深度学习的实时高性能街景图像语义分割方法。准备街景图像训练、验证和测试数据集;对数据集图像进行下采样,减小图像的分辨率;对现有的轻量级分类网络进行改造作为语义分割的基础特征提取网络;在基础特征提取网络后串联一个鉴别性孔洞空间金字塔池化用于解决语义分割的多尺度问题;将若干个卷积层堆叠,形成浅层的空间信息保存网络;使用特征融合网络将得到的特征图进行融合形成预测结果;将输出图像与数据集中的语义标注图像进行对比,利用反向传播算法进行端到端的训练,得到实时高性能街景图像语义分割网络模型;将待测试的街景图像输入实时高性能街景图像语义分割网络模型中得到街景图像的语义分割结果。

    基于级联多任务学习深度神经网络的人脸属性识别方法

    公开(公告)号:CN108564029B

    公开(公告)日:2020-12-01

    申请号:CN201810323645.7

    申请日:2018-04-12

    Applicant: 厦门大学

    Inventor: 严严 庄妮 王菡子

    Abstract: 基于级联多任务学习深度神经网络的人脸属性识别方法,涉及计算机视觉技术。首先设计级联的深度卷积神经网络,然后在级联的深度卷积神经网络里,对于每一个级联的子网络,采用多任务学习,同时学习人脸分类、边框回归、人脸关键点检测、人脸属性分析四个任务,接着在基于级联多任务学习的深度卷积神经网络里,采用一种动态损失权重机制,来计算人脸属性的损失权重,最终根据训练好的网络模型,将级联的最后一个子网络的人脸属性识别结果作为最终的人脸属性识别结果。使用级联的方法联合训练了三个不同的子网络,达到了端到端的训练,优化了人脸属性识别的结果,不同于在损失函数里使用固定的损失权重,本发明考虑到不同人脸属性间的差异性。

    特定对象的目标建议窗口生成方法及其在目标跟踪的应用

    公开(公告)号:CN108257148B

    公开(公告)日:2020-09-25

    申请号:CN201810046395.7

    申请日:2018-01-17

    Applicant: 厦门大学

    Abstract: 特定对象的目标建议窗口生成方法及其在目标跟踪的应用,涉及计算机视觉技术。给定一帧训练视频,将该图像分成三个区域:完全的目标区域,完全的背景区域以及目标和背景的混合区域。对完全的目标区域和完全的背景区域分别计算目标像素和背景像素的概率分布图,更新目标像素和背景像素的概率分布图模型。给定一帧测试视频,利用训练好的概率分布图来预测图像中每个像素属于目标的概率,得到概率响应图。对原图和概率响应图分别提取目标建议窗口,把这些目标建议窗口都作为候选的目标建议窗口。对得到的目标建议窗口基于与对象的相似度进行排序,生成特定对象的目标建议窗口。把特定对象的目标建议窗口作为MDNET的训练样本实现目标跟踪。

    基于多任务多标签学习卷积神经网络的人脸属性识别方法

    公开(公告)号:CN110443189A

    公开(公告)日:2019-11-12

    申请号:CN201910704048.3

    申请日:2019-07-31

    Applicant: 厦门大学

    Abstract: 基于多任务多标签学习卷积神经网络的人脸属性识别方法,涉及计算机视觉技术。首先采用多任务学习,同时学习人脸关键点检测和人脸属性识别两个任务;考虑不同属性的学习难度和学习收敛速度不同,将属性分为主观属性和客观属性,采用动态权重和自适应阈值策略来加快网络的收敛速度和缓解样本不平衡问题;最终根据训练好的网络模型,将主观属性和客观属性子网络的人脸属性识别结果作为最终的人脸属性识别结果。使用动态权重方案和自适应阈值调整,加快网路收敛速度的同时可缓解标签不平衡问题;采用空间金字塔池化的方法训练三个不同的子网络,达到了端到端的训练进行多任务多人脸属性识别。提高人脸属性识别的精度,尤其是难度较大的主观属性。

    基于混合训练的深度学习人脸验证方法

    公开(公告)号:CN106203533B

    公开(公告)日:2019-09-20

    申请号:CN201610592954.5

    申请日:2016-07-26

    Applicant: 厦门大学

    Abstract: 基于混合训练的深度学习人脸验证方法。准备人脸数据集;对每幅图像进行人脸和人脸关键点检测;对所有人脸归一化,得人脸图像训练集,再划分为训练和验证数据集,计算所有人脸图像的均值图像;将所有人脸图像都减去均值图像得均值化的训练数据集和验证数据集;训练深度卷积神经网络;对每幅人脸图像生成对应的三元组,构成三元组训练数据集和三元组验证数据集;再次训练深度卷积神经网络;对于给定待验证的两幅图像进行人脸和人脸特征点检测,并减去均值图像,输入深度卷积神经网络中,进行网络前馈操作,并提取特征;根据选定的阈值,当两幅图像提取特征之间的距离大于阈值,判定两张图像中的人脸属于同一个人,否则判定为不同人。

    基于局部特征共生性和偏最小二乘法的行人检测方法

    公开(公告)号:CN105975921B

    公开(公告)日:2019-06-07

    申请号:CN201610279313.4

    申请日:2016-04-29

    Applicant: 厦门大学

    Abstract: 基于局部特征共生性和偏最小二乘法的行人检测方法,涉及计算机视觉技术。包括以下步骤:准备训练样本集,将训练样本的特征向量组合作为预测矩阵X,将训练样本的类别组合作为响应矩阵y;利用偏最小二乘法对预测和响应矩阵建立模型,求得权重矩阵W;根据权重矩阵W计算分数较高的特征作为候选特征,用于生成局部特征共生性;对局部图像块中的候选特征进行二值化并组合成局部特征共生性的二值化模式;计算二值化模式的概率分布,将其用于训练基于Boosted决策树的行人检测分类器;输入待检测图像,通过得到的分类器在待检测图像中找出分数较高的目标窗口作为可能的行人物体,完成检测。

Patent Agency Ranking