一种基于图卷积神经网络的风电功率预测方法及系统

    公开(公告)号:CN111784041A

    公开(公告)日:2020-10-16

    申请号:CN202010598496.2

    申请日:2020-06-28

    IPC分类号: G06Q10/04 G06Q50/06 G06N3/04

    摘要: 一种基于图卷积神经网络的风电功率预测方法及系统,获取区域内各个风电的地理位置信息,构建距离倒数矩阵;对风电数据进行采样构建样本集,样本集包括训练数据样本集以及预测数据样本集;依据距离倒数矩阵构建图卷积神经网络层;构建时序卷积神经网络层;基于图卷积神经网络层以及时序卷积神经网络层构建风电预测模型;利用训练数据样本集对风电预测模型进行训练,然后对预测数据样本集进行预测。本发明利用基于图卷积神经网络能够有效处理风电站间地理位置信息的非欧氏数据,可以充分挖掘其数据的空间相关性;针对风电站之间的图数据结构进行了合理的设计,使其更符合风电的出力特性;利用该模型进预测风电功率,能够提高预测的精度。