-
公开(公告)号:CN110595151B
公开(公告)日:2021-06-01
申请号:CN201910889421.7
申请日:2019-09-19
IPC: G02B6/42
Abstract: 本发明公开了一种利用自聚焦光纤形成光阱并且冷却微粒的方法及装置。自聚焦光纤出射捕获光,形成光阱;从垂直于光纤光轴的方向收集微粒的散射光,解析出微粒在三个正交方向上的运动信息;基于该运动信息冷却微粒的质心运动。该装置包括捕获光阱模块、运动探测模块和反馈冷却模块。本发明可提高微粒对捕获光的散射效率,增大光阱中稳定捕获点与光纤端面的间距;将高时间分辨率的光电探测器与光纤光阱结合,解决传统光纤光阱无法冷却微粒质心运动的难题;施加冷却方案后的光纤光阱,可在高真空环境下稳定悬浮微粒,最终提高光纤光阱测量装置的探测灵敏度和系统集成度。
-
公开(公告)号:CN112858304A
公开(公告)日:2021-05-28
申请号:CN202110445513.3
申请日:2021-04-25
Abstract: 本发明公开一种基于纳米微粒光学成像的光阱电场变化量标定装置及方法,通过直观光学成像的方法,测量恒定电场作用下的线纳米粒子平衡位置位移量实现标定,避免错误信号的引入,增加差分标定的可信度。本发明的具体标定方法与装置不仅适用于电场量的标定,对于其他如磁力等的标定同样适用。通过本发明力学量的精确标定,可促进真空光阱传感技术的发展应用。同时本发明的标定装置可以帮助使用者进行感知微粒投送过程以及微粒动力学行为如粒子吸附、掉落等的监测。
-
公开(公告)号:CN112014260A
公开(公告)日:2020-12-01
申请号:CN202010791766.1
申请日:2020-08-08
IPC: G01N5/00
Abstract: 本发明公开了一种利用光阱捕获微粒进行微生物快速检测的方法及装置。该装置通过利用光阱技术形成稳定的捕获光场实现对微粒的稳定捕获,通过对微粒运动信息的处理,实现对微粒质量的高精度测量,微粒表面根据检测需要设有微生物特异性的结合位点或者配体。本发明还提供了一种利用该装置进行微生物检测的方法,通过测量导入待测气体前后微粒的质量变化,即可对微生物进行快速检测,检测步骤简便、快速、灵敏度高。
-
公开(公告)号:CN111623871A
公开(公告)日:2020-09-04
申请号:CN202010667308.7
申请日:2020-07-13
Abstract: 本发明公开了一种利用纳米微粒测量激光光场相对强度分布的方法和装置。通过在载玻片上放置纳米微粒,并将载玻片放置于待测光场中,当光场入射到纳米微粒时会发生瑞利散射,其散射光光强与微粒所在位置处的待测光场的光强成正比,利用光电探测器收集纳米微粒的散射光信号,同时通过移动载玻片来实现纳米微粒的移动,记录在不同位置处纳米微粒的散射光光强,即可实现对待测光场的相对光强分布扫描。本发明提供一种新的光场相对强度测量手段,并提供更高的测量精度,易于应用实施。
-
公开(公告)号:CN111551250A
公开(公告)日:2020-08-18
申请号:CN202010667605.1
申请日:2020-07-13
Abstract: 本发明公开了一种测量光场分布的方法及装置。利用光阱稳定悬浮微粒,移动光阱使微粒靠近待测光场,利用光电探测器收集微粒在待测光场的三维空间中不同位置的散射光信号,根据散射光强与该位置的光强成正比解算出待测光场的光场分布。测量光场分布的装置,包括激光器、捕获光路、微粒、光电探测器、控制系统和上位机;激光器出射激光,经过捕获光路,出射高度聚焦的捕获光B,形成光阱,捕获微粒;微粒在待测光场A中的某个位置,散射光C被光电探测器收集;光电探测器将散射光信号上传到上位机;上位机根据不同位置处获取的散射光信号解算出待测光场A的光场分布。本发明可精确获得光场的三维光强分布,将光场测量的空间分辨率提升到纳米量级。
-
-
-
-