-
公开(公告)号:CN104987125A
公开(公告)日:2015-10-21
申请号:CN201510404369.3
申请日:2015-07-10
Applicant: 国家电网公司 , 国网电力科学研究院武汉南瑞有限责任公司
Abstract: 本发明提供了一种碳纳米管改性泡沫陶瓷的制备方法,其步骤包括:将无机陶瓷颗粒和阳离子表面活性剂加入去离子水中进行高速搅拌,使得阳离子表面活性剂包裹于无机陶瓷颗粒表面,然后过滤、干燥后得到带正电荷的无机陶瓷颗粒;将其与碳纳米管一起加入去离子水中,使带正电荷的无机陶瓷颗粒与碳纳米管发生静电吸附,然后过滤、干燥后得到复合粉末;将其与有机树脂一起研磨后,在氮气保护下进行热压烧结,得到所述碳纳米管改性泡沫陶瓷。本发明的碳纳米管作为增强相一方面可以对泡沫陶瓷基体起到增韧的作用,另一方面碳纳米管的中空结构可以使声波在其中多次反弹从而达到降噪的效果。本发明制备方法具有很强的实用性。
-
公开(公告)号:CN104559187A
公开(公告)日:2015-04-29
申请号:CN201510055691.X
申请日:2015-02-03
Applicant: 国家电网公司 , 国网电力科学研究院武汉南瑞有限责任公司
Abstract: 本发明公开了一种碳纳米管改性有机硅树脂基复合材料的制备方法,包括以下步骤:1)先用溶剂将碳纳米管分散,再包裹一层表面活性剂,然后加热使溶剂挥发,得到分散均匀的干燥的碳纳米管;2)用有机溶剂将有机硅树脂稀释成50%的固含量,加入步骤1)处理后的碳纳米管,采用超声分散将碳纳米管均匀分散于稀释后的有机硅树脂中;3)将过量的有机溶剂除去,并加热固化,即可得到。本发明使用性能优异的碳纳米管作为填料,使得最终复合材料的导电性能良好。本发明的制备方法可以达到最佳的分散效果;制备工艺所需设备成本较低,操作方便,制备周期较短;所用原材料对基体和碳纳米管的结构无破坏,适用于工业化批量生产。
-
公开(公告)号:CN103954888A
公开(公告)日:2014-07-30
申请号:CN201410125967.2
申请日:2014-03-31
Applicant: 国家电网公司 , 江苏省电力公司 , 江苏省电力公司电力科学研究院
IPC: G01R31/12
Abstract: 本发明公开了一种悬浮放电试验模型悬浮放电检测定位装置及方法,装置包括:悬浮放电模型(1)、高压电源(2)、试验GIS模型(3)、特高频传感器(4)、超声波传感器(5)、特高频放大器(6)、超声波放大器(7)、示波器(8)、地电波传感器(9)和地电波放大器(10)。本发明提供的一种悬浮放电试验模型悬浮放电检测定位装置及方法,适用于现场带电检测、采用多种检测方法、检测结果可相互验证、进而确保检测结果的准确性的悬浮放电试验模型悬浮放电检测定位装置及方法,进一步地在理论上对悬浮放电的特性进行研究,为实际现场对电力一次设备内部产生的悬浮放电进行检测提供可靠的理论依据。
-
公开(公告)号:CN103740053A
公开(公告)日:2014-04-23
申请号:CN201310662297.3
申请日:2013-12-09
Applicant: 国家电网公司 , 南京南瑞集团公司 , 国网电力科学研究院武汉南瑞有限责任公司 , 国网浙江省电力公司湖州供电公司 , 国网山西省电力公司电力科学研究院
Abstract: 本发明公开了一种高含量碳纳米管改性环氧树脂基导电防腐复合材料的制备方法。1)用有机溶剂将高含量的碳纳米管分散,然后包裹一层表面活性剂,得到碳纳米管悬浮液;2)将所得到的碳纳米管悬浮液分为两份,一份加入到预热的含有润湿分散剂的环氧树脂中,另一份加入到含有润湿分散剂的固化剂中,使碳纳米管分别均匀分散于环氧树脂和固化剂中;3)将溶有碳纳米管的环氧树脂和固化剂混合均匀,固化后即得。本发明有效地解决了高含量碳纳米管难以溶于环氧树脂中的难题,使得碳纳米管在获得良好分散的前提下能够在环氧树脂中充分连接成导电网络,从而使碳纳米管改性环氧树脂基复合材料的导电性能获得了更大的上升空间。
-
公开(公告)号:CN103666199A
公开(公告)日:2014-03-26
申请号:CN201310661841.2
申请日:2013-12-09
Applicant: 国家电网公司 , 国网浙江省电力公司 , 南京南瑞集团公司 , 国网电力科学研究院武汉南瑞有限责任公司
IPC: C09D163/00 , C09D7/12 , C09D5/24 , C09D5/08
Abstract: 本发明提供一种用于接地网的碳纳米管改性导电防腐涂料及其制备方法。涂料包括以下组分:环氧树脂40~60份,环氧树脂稀释剂15~25份,碳纳米管4~6份,防锈剂10~15份,助剂2~5份,固化剂4~5份。制备方法:先将环氧树脂与环氧树脂稀释剂混合均匀,再将碳纳米管、防锈剂和助剂加入到稀释后的环氧树脂中,混合均匀后加入固化剂,搅拌均匀,即得。本发明采用碳纳米管作为导电填料,具有较大的长径比,在涂料中容易形成三维导电网络,树脂基体填充在网络中,并且采用较少的导电填料就能达到较优的导电性能。涂料喷、刷后的涂层具有电阻率低且导电性能稳定,耐腐蚀性强;涂层致密,柔韧性好,附着力强。
-
公开(公告)号:CN103605053A
公开(公告)日:2014-02-26
申请号:CN201310585991.X
申请日:2013-11-19
Applicant: 国家电网公司 , 江苏省电力公司 , 江苏省电力公司电力科学研究院 , 中国电力科学研究院 , 国网湖北省电力公司 , 西安西电开关电气有限公司
IPC: G01R31/12
Abstract: 本发明公开了一种冲击电压下气体绝缘组合电器局部放电试验装置及方法,装置包括冲击电压发生器,冲击电压发生器分别连接分压器和气体绝缘组合电器,所述气体绝缘组合电器包括套管、套管一端与冲击电压发生器连接,另一端连接高压导体,所述高压导体设置于腔体内,至少一个盆式绝缘子设置于腔体内并将腔体分割成多个缺陷试验腔体单元;电流传感器与腔体相连,各缺陷试验腔体单元内部设置特高频传感器,超声波传感器设置于腔体外表面,电流传感器、特高频传感器、超声波传感器分别与局部放电信号处理装置相连。本发明可完成对于现场开展冲击电压下GIS局部放电的检测及结果分析。
-
公开(公告)号:CN103605051A
公开(公告)日:2014-02-26
申请号:CN201310585738.4
申请日:2013-11-19
Applicant: 国家电网公司 , 江苏省电力公司 , 江苏省电力公司电力科学研究院
Abstract: 本发明公开了一种冲击电压下局部放电试验用气体绝缘金属尖端缺陷装置和,其特征在于:包括上铝极板和下铝极板,有机玻璃管设置于上铝极板和下铝极板之间,并与上铝极板和下铝极板一起组成圆柱形腔体;可调节导杆与上铝极板通过螺纹连接,调节内部模拟缺陷的尺寸;金属尖端电极通过螺杆联接于导杆上,充放气装置安装于下铝极板的一侧,通过其对圆柱体腔体进行充放气。本发明的气体绝缘金属尖端缺陷装置和冲击电压下局部放电试验系统,缩短试验时间、研究方便快捷。
-
公开(公告)号:CN103602843A
公开(公告)日:2014-02-26
申请号:CN201310659972.7
申请日:2013-12-09
Applicant: 国家电网公司 , 南京南瑞集团公司 , 国网电力科学研究院武汉南瑞有限责任公司 , 中国科学院苏州纳米技术与纳米仿生研究所
Abstract: 本发明公开了一种碳纳米管增强铝基复合材料,通过下述方法制备得到:1)将预分散的碳纳米管与粘结剂高速剪切混合后,使粘结剂均匀包覆在碳纳米管表面,再加入纯铝粉或铝合金粉高速剪切混合,使碳纳米管均匀分布在纯铝粉或铝合金粉的表面,得到第一复合粉体;2)将所得到的第一复合粉体进行球磨处理,得到第二复合粉体,3)再依次经烧结成型和热挤压成型工序,即得。本发明消除由于密度差异而导致分层的不利因素,使CNTs和铝粉均匀混合,并保持良好的烧结活性,增加二者之间的结合强度,获得良好界面结合。本发明能够利用基体的加工硬化、晶粒细化强化共同作用增强铝基体,使得复合材料的抗拉强度和耐磨性大幅度提高。
-
公开(公告)号:CN103179128A
公开(公告)日:2013-06-26
申请号:CN201310105291.6
申请日:2013-03-28
IPC: H04L29/06
Abstract: 本发明公开了一种安卓平台浏览器与网站服务器间的通信安全增强代理系统,属于计算机及信息安全技术领域。本系统由相互连通的手机或平板电脑和服务器组成;安装在手机或平板电脑上的安卓平台包括安卓浏览器,并设置有浏览器连接重定向子系统和代理服务器子系统;服务器包括网站服务器,并设置有代理服务支持子系统。浏览器连接重定向子系统、安卓浏览器、代理服务器子系统、理服务器支持子系统和网站服务器依次连通。本发明在浏览器与网站服务器间实施一层加密传输,在不影响用户体验的情况下增强安全性;低成本,通用性强,配置灵活,通过调整加密解密算法可以提供不同强度的安全服务;适用于安卓操作系统中浏览器与服务器间的安全通信过程。
-
公开(公告)号:CN103149516A
公开(公告)日:2013-06-12
申请号:CN201310072950.0
申请日:2013-03-07
Applicant: 江苏省电力公司电力科学研究院 , 江苏省电力公司 , 国家电网公司
Abstract: 本发明公开了基于多通道超声波检测的组合电器故障源定位方法,通过将多个超声波检测单元按照一定规则安装在待测GIS壳体上,在耐压试验或设备运行时监测超声信号,然后通过无线传输模块将测量结果发送到安全区域的后台系统。当设备产生异常信号或发生击穿时,通过对多通道超声波信号进行分析处理,可将存在异常超声波信号的位置或故障击穿点精确定位在50cm以内。该装置不改变GIS原有接线和运行方式,且安装、操作方便,故障源定位效果明显。
-
-
-
-
-
-
-
-
-