-
公开(公告)号:CN117592169A
公开(公告)日:2024-02-23
申请号:CN202410002076.1
申请日:2024-01-02
IPC分类号: G06F30/13 , G06F30/23 , G06F113/16 , G06F119/14
摘要: 本发明公开一种用于输电线路变截面锚杆基础的水平承载力计算方法,确定水平力影响深度范围内锚固界面上地基土水平抗力假设理论分布函数f(x),根据函数f(x)计算单根变截面锚杆极限水平承载力 ;计算承台底面地基土对承台的摩擦力 ;计算变截面群锚基础承台侧面土体水平极限承载力 ;根据单根变截面锚杆极限水平承载力 、承台底面地基土对承台的摩擦力 、承台侧面土体水平极限承载力,结合锚杆根数,得到变截面式群锚基础水平承载力实际值P;通过本发明计算方法多次迭代计算可推导出优化最适宜的承台宽度及承台埋深,进而减少群锚基础的承台基坑开挖深度,利于保护环境并降低工程成本。
-
公开(公告)号:CN116356894A
公开(公告)日:2023-06-30
申请号:CN202310331421.1
申请日:2023-03-30
摘要: 本发明公开了一种适用于输电杆塔基础承载力可靠性的评价方法。它包括以下步骤:基于输电杆塔基础检测指标得到检测指标判断向量;依据检测指标对各类输电杆塔基础承载力的敏感性分析得到对其可靠性影响的评价权重系数;将评价权重系数与检测指标判断向量乘积作为不同极限状态承载力可靠性分布向量;通过取不同极限状态可靠性分布向量的最小值确定输电杆塔基础承载力可靠性的评价等级评分值;根据输电杆塔基础承载力可靠性的评价等级评分值,建立输电杆塔基础承载力可靠性评价等级。本发明建立形成输电杆塔基础可靠性评价方法,从而快速地确定输电杆塔基础承载力可靠性弱化程度。
-
公开(公告)号:CN111783207B
公开(公告)日:2022-12-23
申请号:CN202010630478.8
申请日:2020-06-30
IPC分类号: G06F30/13 , G06F30/20 , G06F119/14
摘要: 本发明公开了一种输电线路锚杆基础的设计方法。它包括设计锚杆埋深和锚杆根数,步骤为:设定当次运算的锚杆根数及锚杆埋深;基于锚杆根数计算单锚杆极限上拔承载力目标值Pu1;基于锚杆埋深计算单锚杆极限上拔承载力实际值Pu;比较单锚杆极限上拔承载力目标值Pu1和单锚杆极限上拔承载力实际值Pu,当单锚杆极限上拔承载力实际值Pu大于等于单锚杆极限上拔承载力目标值Pu1时,停止运算,则停止运算时的锚杆埋深和锚杆根数为最终锚杆埋深和锚杆根数。本发明的锚杆施工考虑的上拔承载力、下压承载力与锚杆基础的实际受力情况更加符合,有利于提高锚杆基础设计的安全可靠性,同时也具有较高的社会效益和经济效益。
-
公开(公告)号:CN118087915A
公开(公告)日:2024-05-28
申请号:CN202410132715.6
申请日:2024-01-31
IPC分类号: E04G23/02
摘要: 本发明公开一种输电铁塔主材与塔座板连接加固方法,包括将铁塔保护帽破坏,对输电铁塔的塔腿构件及塔座板进行除锈处理;焊接角钢与靴板;拆除原连接角钢与靴板的螺栓;在输电铁塔主材角钢两肢内侧布置内侧加固钢板,在靴板的外侧布置外侧加固钢板;外侧加固钢板超出靴板的部位与角钢上部外表面之间存在缝隙,所述的缝隙处设置钢垫板,在角钢、塔座板、内侧加固钢板、外侧加固钢板、钢垫板上涂刷防腐材料;浇筑新混凝土保护帽;本发明解决了输电铁塔塔腿与塔座板连接处锈蚀引起的铁塔安全性下降的问题,本发明可在不停电的条件下消除铁塔锈蚀并加固塔腿与塔座板的连接,提高了铁塔安全性,避免了临时拉线和高空作业,降低了施工危险性。
-
公开(公告)号:CN113515801A
公开(公告)日:2021-10-19
申请号:CN202110838572.7
申请日:2021-07-23
IPC分类号: G06F30/13 , G06F30/20 , G06F119/14
摘要: 本发明公开了一种钢管K形有加劲相贯焊节点承载力计算方法,涉及电力技术和建筑工程的结构计算领域。它包括以下步骤:步骤1:计算得到中间参数ψn;步骤2:计算受压支管与主管的管径比β和中间参数ψβ;步骤3:计算得到中间参数ψa;步骤4:计算得到无加劲节点部分贡献项NcK;步骤5:计算得到受压侧节点板有效长度lec;步骤6:计算得到节点板部分贡献项NcP;步骤7:计算得到环板部分贡献项NcR;步骤8,计算得到有加劲相贯焊节点承载力NcKPR,受拉支管有加劲相贯焊节点承载力NtKPR。通过本发明的计算方法得到的钢管K形有加劲相贯焊节点安全性能高,工程造价低;本发明可广泛应用于输电线路在钢管K形有加劲相贯焊节点的设计中。
-
公开(公告)号:CN111783207A
公开(公告)日:2020-10-16
申请号:CN202010630478.8
申请日:2020-06-30
IPC分类号: G06F30/13 , G06F30/20 , G06F119/14
摘要: 本发明公开了一种输电线路锚杆基础的设计方法。它包括设计锚杆埋深和锚杆根数,步骤为:设定当次运算的锚杆根数及锚杆埋深;基于锚杆根数计算单锚杆极限上拔承载力目标值Pu1;基于锚杆埋深计算单锚杆极限上拔承载力实际值Pu;比较单锚杆极限上拔承载力目标值Pu1和单锚杆极限上拔承载力实际值Pu,当单锚杆极限上拔承载力实际值Pu大于等于单锚杆极限上拔承载力目标值Pu1时,停止运算,则停止运算时的锚杆埋深和锚杆根数为最终锚杆埋深和锚杆根数。本发明的锚杆施工考虑的上拔承载力、下压承载力与锚杆基础的实际受力情况更加符合,有利于提高锚杆基础设计的安全可靠性,同时也具有较高的社会效益和经济效益。
-
公开(公告)号:CN118246131B
公开(公告)日:2024-08-09
申请号:CN202410667193.X
申请日:2024-05-28
IPC分类号: G06F30/13 , G06F119/14
摘要: 本发明公开了一种沙漠地区金属装配式基础的上拔承载力计算方法。该方法包括如下步骤:所述金属装配式基础的上拔承载力由金属装配式基础自重、抗拔滑动面以内地基土体自重、以及抗拔滑动面外部土体反力的竖向分力三部分共同抵抗;假设抗拔滑动面为直线破裂面,抗拔滑动面围成的区域为圆台区域,计算获得抗拔滑动面以内地基土体自重;获得楔形土体自重和抗拔滑动面外部土体反力;将抗拔滑动面以内地基土体自重、以及抗拔滑动面外部土体反力,代入金属装配式基础的上拔承载力的计算公式;计算出上拔承载力。本计算方法公式简便,且计算精度优于传统土重法,更具实用性。
-
公开(公告)号:CN117702800A
公开(公告)日:2024-03-15
申请号:CN202311662439.6
申请日:2023-12-06
申请人: 国家电网有限公司 , 中国电力工程顾问集团中南电力设计院有限公司
摘要: 本发明公开一种变截面锚杆基础结构及施工方法,锚杆基础包括上段锚杆及下段锚杆,上段锚杆内部设置钢护筒,上段锚杆的上部位于土层或全风化岩层中,上段锚杆的底部穿过土岩交界线,嵌入强风化、中风化、微风化或未风化岩体中,锚筋沿锚杆通长布置,底部设置灌浆料保护层,上段锚杆截面积大于下段锚杆截面积,钢护筒外部、钢护筒内部及下段锚孔内部设有灌浆料;本发明上段锚杆处于稳定性较弱的覆土层,但上段锚杆更大的截面积及钢护筒使上段锚杆具备一定的水平承载力;上段锚杆底部嵌岩,可以增加竖向抗压承载力;下段锚杆处于稳定性较强的岩石基础中,能够提供足够的竖向抗拔承载力。本发明在不进行大规模开挖覆土层的条件下,保证了锚杆结构稳定性及竖向与水平承载能力,缩短了施工工期和降低工程成本。
-
公开(公告)号:CN116306125A
公开(公告)日:2023-06-23
申请号:CN202310221287.X
申请日:2023-03-09
IPC分类号: G06F30/23 , G06F119/02 , G06F119/14
摘要: 本发明公开了一种基于检测状态的输电杆塔结构随机建模方法。它包括如下步骤,步骤一:建立输电杆塔无损有限元模型;步骤二:将杆塔结构中构件统计为受拉、受压两种类别;步骤三:确定输电杆塔构件的设计应力比和重要构件集、次要构件集;步骤四:建立输电杆塔构件关于腐蚀系数和弯曲影响系数的承载力退化公式并确定输电杆塔构件的损伤等级简化分区图;步骤五:基于检测状态信息,从相应简化分区关系图中均匀抽取每一输电杆塔构件的腐蚀系数和弯曲影响系数;步骤六:将步骤四中抽取的检测变量数值在输电杆塔无损有限元模型中合理表述,可建立输电杆塔某检测状态的有限元分析模型。本发明具有可以反映输电杆塔损伤程度的优点。
-
公开(公告)号:CN118690601A
公开(公告)日:2024-09-24
申请号:CN202410718249.X
申请日:2024-06-04
发明人: 陈志辉 , 付诗禧 , 徐彬 , 龚正轩 , 曾二贤 , 黄雄辉 , 冯衡 , 王松涛 , 吴海兵 , 胡超 , 王亚东 , 伍林伟 , 王新洋 , 王思宇 , 李毅阳 , 于嵩松 , 曾士文
IPC分类号: G06F30/23 , G06F111/04 , G06F119/14 , G06F113/26
摘要: 本发明涉及架空输电线路角钢塔加固领域,尤其涉及一种基于等效弹性约束模型的GRPU加固角钢承载力计算方法,基于轴压试验结果建立正确的有限元分析模型,对加固比、螺栓间距等参数开展参数化分析;将GRPU加固材的加固效果简化为分布在构件跨中位置的弹簧约束;基于欧拉公式推导出角钢构件的稳定承载力计算公式;基于参数化分析结果并通过最小二乘法拟合,推导出GRPU加固材等效为弹簧提供的承载力计算公式,将其与角钢的稳定承载力求和即可推导出GRPU加固角钢的承载力的计算公式;最后与有限元模拟结果相比,本发明计算方法的结果计算误差在7.83%以内,具有较高的准确性。因此,本发明能够解决现有技术无法通过显示表达式直接计算GRPU加固角钢承载力的技术问题。
-
-
-
-
-
-
-
-
-