一种基于张量网络的熵编码、熵解码方法及图像压缩方法

    公开(公告)号:CN115834914B

    公开(公告)日:2025-04-25

    申请号:CN202211561058.4

    申请日:2022-12-07

    Abstract: 本发明提供一种基于张量网络的熵编码、熵解码方法及图像压缩方法、系统、装置,包括:采用格雷码将图像的离散特征划分为多个二进制位平面;采用特征映射将二进制位平面映射到对应的希尔伯特空间内,生成位平面的向量化特征;基于张量网络的熵编码模型,对位平面的向量化特征分别进行概率估计及编码,生成位平面特征二进制码流;合并所有的位平面特征二进制码流,得到特征二进制码流。采用张量网络建模特征概率分布,能够在不引入任何先验假设的条件下,准确计算特征的联合概率,相比于现有熵模型的设计进一步提升了压缩结构的灵活性和可扩展性。

    一种基于张量网络的熵编码、熵解码方法及图像压缩方法

    公开(公告)号:CN115834914A

    公开(公告)日:2023-03-21

    申请号:CN202211561058.4

    申请日:2022-12-07

    Abstract: 本发明提供一种基于张量网络的熵编码、熵解码方法及图像压缩方法、系统、装置,包括:采用格雷码将图像的离散特征划分为多个二进制位平面;采用特征映射将二进制位平面映射到对应的希尔伯特空间内,生成位平面的向量化特征;基于张量网络的熵编码模型,对位平面的向量化特征分别进行概率估计及编码,生成位平面特征二进制码流;合并所有的位平面特征二进制码流,得到特征二进制码流。采用张量网络建模特征概率分布,能够在不引入任何先验假设的条件下,准确计算特征的联合概率,相比于现有熵模型的设计进一步提升了压缩结构的灵活性和可扩展性。

Patent Agency Ranking