-
公开(公告)号:CN112126759B
公开(公告)日:2021-10-15
申请号:CN202011064924.X
申请日:2020-09-30
Applicant: 东北大学 , 南京钢铁股份有限公司
Abstract: 本发明公开了利用织构控制提高船舶用TMCP钢冲击韧性的方法。本发明以现有工业用EH47连铸坯为原料,采用TMCP两阶段控轧工艺,在低压缩比和高终轧温度条件下,通过控制中间坯变形分配,轧后利用空冷+水冷+空冷+水冷四阶段冷却的方法,从而在钢板心部得到较高强度的织构分布,利用钢板心部较高强度的有利织构和均匀分布的较高含量的{110}滑移面改善钢板‑80℃条件下的冲击功。本发明的生产方法能显著提高钢板‑80℃时的冲击韧性,同时生产工序简单、可操作强、实施难度小、织构控制效果显著。
-
公开(公告)号:CN111842489A
公开(公告)日:2020-10-30
申请号:CN202010620801.3
申请日:2020-07-01
Applicant: 东北大学 , 南京钢铁股份有限公司
IPC: B21B3/02 , B21B37/74 , C22C38/02 , C22C38/04 , C22C38/26 , C22C38/38 , C22C38/22 , C22C38/24 , C22C38/28
Abstract: 本发明公开一种提高热轧管线钢表面质量的方法,属于钢铁材料轧制技术领域。管线钢成分范围(质量分数%)为:C 0.04~0.09%,Si 0.2~0.4%,Mn 0.8~1.7%,Nb 0.03~0.08%,Cr≤0.5%,Mo≤0.4%,V≤0.04%,Ti≤0.02%,P≤0.015,S≤0.01,余量为铁。本发明针对厚度为16~25mm的管线钢产品,加热炉控制温度为1130~1170℃,采用两阶段轧制,粗轧阶段采用道次间冷却,精轧阶段减少除鳞道次,轧后冷却温度控制在400℃以下。上述方法可以在保证力学性能同时,获得良好的板坯表面质量。
-
公开(公告)号:CN111797520B
公开(公告)日:2023-10-13
申请号:CN202010603899.1
申请日:2020-06-29
Applicant: 东北大学 , 南京钢铁股份有限公司
IPC: G06F30/20 , G06F30/27 , G06F119/08 , G06F119/02
Abstract: 本发明公开了一种基于智能增强的在线冷却控制方法,属于IA智能控制领域。本发明建立了专家库系统,并通过严格的分级决策模型维护专家库中的样本。本发明保证了温控模型计算规程的准确稳定性;同时以合理的方式将IA技术引进中厚板在线冷却系统中,将人工干预与温控模型对比计算相结合,在保证温度命中率的同时兼顾冷却路径与冷速的工艺需求。本发明整体上极大地提高了生产效率及系统可靠性。
-
公开(公告)号:CN112098249A
公开(公告)日:2020-12-18
申请号:CN202010966240.2
申请日:2020-09-15
Applicant: 东北大学 , 南京钢铁股份有限公司
Abstract: 本发明公开了一种利用冲击断口显微硬度分布初步评估钢板止裂韧性的方法。本发明以现有冲击试验为检测手段,进一步挖掘Charpy冲击试验的潜能,通过比较未进行止裂韧性Kca检测的钢板和已知止裂韧性Kca钢板的冲击断口附近显微组织的变形情况,初步评估未检测钢板大致的止裂韧性Kca,进而为后续是否进一步送检提供参考。本发明的评估方法能迅速判断止裂钢板的止裂性能,为后续鉴定工作提供参考依据,可操作强、实施难度小、显著降低止裂钢试制成本。
-
公开(公告)号:CN117286421A
公开(公告)日:2023-12-26
申请号:CN202311245117.1
申请日:2023-09-26
Applicant: 南京钢铁股份有限公司 , 东北大学
Abstract: 本发明公开了一种具有超低温韧性的节约型320MPa级碳锰低温钢及其制造方法;属于钢铁材料热轧加工领域;其化学成分如下:C 0.07~0.09%,Si0.15~0.25%,Mn 1.0~1.3%,无其他任何微合金化成分,余量为Fe及不可避免的杂质;其制备工艺:加热炉温度1150~1250℃,保温时间大于150min,出炉温度1100~1200℃;采用两阶段控制轧制,终轧温度为770~820℃,轧后进行驰豫待温处理,以保证组织铁素体的相变比例,随后采用超快速冷却工艺,冷却开始温度为710~750℃,终冷温度为560~620℃,平均冷却速度为30~80℃。本发明可生产320MPa级船板钢,具有良好的低温韧性,厚度规格10~40mm,适用于LPG船建造。
-
公开(公告)号:CN111842489B
公开(公告)日:2022-02-08
申请号:CN202010620801.3
申请日:2020-07-01
Applicant: 东北大学 , 南京钢铁股份有限公司
IPC: B21B3/02 , B21B37/74 , C22C38/02 , C22C38/04 , C22C38/26 , C22C38/38 , C22C38/22 , C22C38/24 , C22C38/28
Abstract: 本发明公开一种提高热轧管线钢表面质量的方法,属于钢铁材料轧制技术领域。管线钢成分范围(质量分数%)为:C 0.04~0.09%,Si 0.2~0.4%,Mn 0.8~1.7%,Nb 0.03~0.08%,Cr≤0.5%,Mo≤0.4%,V≤0.04%,Ti≤0.02%,P≤0.015,S≤0.01,余量为铁。本发明针对厚度为16~25mm的管线钢产品,加热炉控制温度为1130~1170℃,采用两阶段轧制,粗轧阶段采用道次间冷却,精轧阶段减少除鳞道次,轧后冷却温度控制在400℃以下。上述方法可以在保证力学性能同时,获得良好的板坯表面质量。
-
公开(公告)号:CN111814861B
公开(公告)日:2023-08-01
申请号:CN202010620805.1
申请日:2020-07-01
Applicant: 东北大学 , 南京钢铁股份有限公司
IPC: G06F18/23 , G06N3/0464 , G06N3/088 , G06F18/214
Abstract: 本发明提供了一种基于双自学习模型的在线冷却控制方法,属于轧钢技术领域。本发明结合无监督空间聚类模型和有监督的深度神经网络预测模型的特点,优势互补,建立双自学习模型并行、权重共享的系统结构。本发明能实现在低成本数据量条件下,快速进行组合式自学习,短时间内完成非线性耦合计算,提高整体控冷系统的鲁棒性和学习效率。
-
公开(公告)号:CN111814861A
公开(公告)日:2020-10-23
申请号:CN202010620805.1
申请日:2020-07-01
Applicant: 东北大学 , 南京钢铁股份有限公司
Abstract: 本发明提供了一种基于双自学习模型的在线冷却控制方法,属于轧钢技术领域。本发明结合无监督空间聚类模型和有监督的深度神经网络预测模型的特点,优势互补,建立双自学习模型并行、权重共享的系统结构。本发明能实现在低成本数据量条件下,快速进行组合式自学习,短时间内完成非线性耦合计算,提高整体控冷系统的鲁棒性和学习效率。
-
公开(公告)号:CN117305720A
公开(公告)日:2023-12-29
申请号:CN202311245111.4
申请日:2023-09-26
Applicant: 南京钢铁股份有限公司 , 东北大学
Abstract: 本发明公开了一种具有超低温韧性的节约型360MPa级碳锰低温钢及其制造方法;属于钢铁材料热轧加工领域;其化学成分如下:C0.09~0.11%,Si0.15~0.25%,Mn 1.5~1.7%,无其他任何微合金化成分,余量为Fe及不可避免的杂质;其制备工艺:加热炉温度1150~1250℃,保温时间大于150min,出炉温度1100~1200℃;采用两阶段控制轧制,终轧温度为750~810℃,轧后进行驰豫待温处理,以保证组织铁素体的相变比例,随后采用超快速冷却工艺,冷却开始温度为700~740℃,终冷温度为560~620℃,平均冷却速度为30~80℃。本发明可生产360MPa级船板钢,具有良好的低温韧性,厚度规格10~40mm,适用于LPG船建造。
-
公开(公告)号:CN112098249B
公开(公告)日:2021-10-29
申请号:CN202010966240.2
申请日:2020-09-15
Applicant: 东北大学 , 南京钢铁股份有限公司
Abstract: 本发明公开了一种利用冲击断口显微硬度分布初步评估钢板止裂韧性的方法。本发明以现有冲击试验为检测手段,进一步挖掘Charpy冲击试验的潜能,通过比较未进行止裂韧性Kca检测的钢板和已知止裂韧性Kca钢板的冲击断口附近显微组织的变形情况,初步评估未检测钢板大致的止裂韧性Kca,进而为后续是否进一步送检提供参考。本发明的评估方法能迅速判断止裂钢板的止裂性能,为后续鉴定工作提供参考依据,可操作强、实施难度小、显著降低止裂钢试制成本。