基于门控时-空图神经网络的广域多母线负荷预测方法

    公开(公告)号:CN115222090A

    公开(公告)日:2022-10-21

    申请号:CN202210609297.6

    申请日:2022-05-31

    摘要: 本发明公开了基于门控时‑空图神经网络的广域多母线负荷预测方法,通过快速最大信息系数确定与母线负荷强相关的气象特征,通过快速最大信息系数确定各母线负荷间的时‑空耦合关联。并通过确定的气象特征,完成相似权时‑空图的构建,通过图卷积的方式对相似权时‑空图各节点空间特征进行提取挖掘,将空间卷积层的结果构成时间序列输入至门控循环单元层,通过门控循环单元实现时域特征挖掘;解决了现有技术中存在的未充分考虑广域空间内多母线负荷间存在的非结构化时‑空耦合关联对预测结果影响以及难以对多母线负荷进行统一预测建模的问题,实现全域多节点特征增强,有效提升负荷预测精度。