-
公开(公告)号:CN116679219A
公开(公告)日:2023-09-01
申请号:CN202310725048.8
申请日:2023-06-19
申请人: 中南大学 , 广东博力威科技股份有限公司
IPC分类号: G01R31/378 , G01R31/385
摘要: 本发明提供一种评价电解液中金属离子对锂离子电池负极性能影响的方法,包括:构建一个电化学体系,该电化学体系由正极、负极和电解液组成,且电解液中添加有金属M的有机盐,正极的容量高于负极,通过对电化学体系以恒流恒压方式充电,以恒流方式放电,测量其首次库仑效率,可根据首次库伦效率来确定金属M对负极的影响大小。该评价方法能够快速高效准确地评价电解液中的金属离子对锂离子负极性能的影响,无需进行长时间的循环性能测试,只需测试评价体系的首次库伦效率,因此能够用于快速筛选电解液添加剂。
-
公开(公告)号:CN116613276A
公开(公告)日:2023-08-18
申请号:CN202310624319.0
申请日:2023-05-30
申请人: 中南大学 , 广东博力威科技股份有限公司
IPC分类号: H01M4/131 , H01M4/505 , H01M4/62 , H01M10/0525
摘要: 本发明公开了降低锰酸锂正极材料锰溶出率的方法,包括以下步骤:将锰酸锂正极材料粉末和碱性氢氧化物溶液搅拌混合、静置、去除水分。本发明通过在锰酸锂正极材料粉末中混合碱性氢氧化物,可以中和电解液产生的HF,抑制Mn3+的歧化反应,降低锰酸锂的锰溶出率,从源头解决尖晶石锰酸锂高温循环性能差的问题。本发明采用碱性氢氧化物溶液浸泡锰酸锂正极材料粉末,将碱性氢氧化物均匀的混入锰酸锂正极材料粉末中,操作简单、能耗低,且成本低。本发明也公开了包含锰酸锂复合正极材料的电池。
-
公开(公告)号:CN114744158B
公开(公告)日:2024-05-03
申请号:CN202210538051.4
申请日:2022-05-18
申请人: 中南大学
IPC分类号: H01M4/139 , H01M4/04 , H01M4/62 , H01M10/42 , H01M10/052
摘要: 本发明公开了一种有机/无机复合涂层用于锂金属电极表面改性的方法,具体包括以下步骤:用溶剂将有机聚合物溶解形成均一的溶液A;向溶液A中加入防沉降添加剂并进行超声分散和搅拌,获得均匀分布的溶液B;向溶液B中加入无机锂盐并进行超声分散和搅拌,得到均匀、稳定的涂层浆料;将涂层浆料喷涂在锂金属电极表面,烘干后即在锂金属电极表面涂覆了一层均匀的有机/无机复合涂层。本发明一种简单高效的方式在锂金属表面制备出一种有机/无机复合涂层,改善锂金属电极的安全性和循环稳定性。
-
公开(公告)号:CN117790881A
公开(公告)日:2024-03-29
申请号:CN202311625832.8
申请日:2023-11-30
申请人: 中南大学
IPC分类号: H01M10/054 , H01M4/13 , H01M10/058 , G01N27/30
摘要: 本发明提供一种双参比结构的软包电池三电极体系,包括电芯,所述电芯包括沿电芯厚度的方向上依次设置的负极极片、短隔膜I、参比电极I、隔膜、参比电极II、短隔膜II和正极极片;负极极片包括沿其长度方向依次设置的第一空箔区和第一料区,正极极片包括沿其长度方向依次设置的第二空箔区和第二料区;短隔膜I用于隔离第一空箔区与参比电极I,短隔膜II用于隔离第二空箔区与参比电极II。该软包电池三电极体系可以无损监测电池正、负极在不同循环次数下的电势变化曲线,并分析软包全电池的容量衰减机理等,该三电极体系监测电池时操作简单、成本低、准确高效、易于测试和推广应用,可应用于软包钠离子电池和其他二次电池领域。
-
公开(公告)号:CN115832307A
公开(公告)日:2023-03-21
申请号:CN202211655581.3
申请日:2022-12-22
申请人: 中南大学
IPC分类号: H01M4/62 , H01M4/38 , H01M10/0525 , B82Y30/00
摘要: 本发明提供了一种不同硅价态的SiOx原位包覆纳米硅负极材料及其制备方法和应用。本发明以纳米硅做为原料,在马弗炉中进行热氧化反应,通过控制反应温度及反应时间制备出具有不同硅价态的SiOx包覆层(SiO2、SiO1.5、SiO中的一种或多种),不同硅价态的SiOx包覆层电化学性能差异巨大,低价态的SiOx包覆层(SiO1.5、SiO)具有电化学活性,从而优化Si@SiOx负极材料的电化学性能与力学性能。本发明制备流程简单,材料一致性良好,使硅材料的容量得以充分发挥。
-
公开(公告)号:CN114062188B
公开(公告)日:2022-08-12
申请号:CN202111352192.9
申请日:2021-11-16
申请人: 中南大学 , 巴斯夫杉杉电池材料有限公司
摘要: 本发明公开了三元正极材料晶格锂可溶出量的测定方法,包括:先采用电位滴定法测定三元正极材料表面的碳酸锂和氢氧化锂的质量分数,取物料进行水洗,水洗后收集滤液并采用电感耦合等离子体发射光谱检测;称量水洗干燥后的三元材料,并采用电位滴定法测量水洗干燥后的三元材料中表面碳酸锂和氢氧化锂的质量,最终能精确分析晶格锂的可溶出量。本方法能实现水洗对材料结构破坏程度的计量,对三元正极材料晶格锂溶出含量的精确测量和分析,能有效促进对于三元正极材料水洗后结构变化的定量分析,有助于探究水洗过程对材料结构、组分及电化学性能的影响机理,深入研究三元正极材料结构与电化学性能之间的构效关系,具有高效准确、应用范围广泛等优点。
-
公开(公告)号:CN114759180A
公开(公告)日:2022-07-15
申请号:CN202210457495.5
申请日:2022-04-28
申请人: 中南大学
IPC分类号: H01M4/36 , H01M4/48 , H01M4/58 , H01M10/0525
摘要: 本发明属于锂离子电池材料技术领域,公开了一种SiOx/锂硅酸盐复合材料及其制备方法和应用。SiOx/锂硅酸盐复合材料包括内核和包裹在内核表面的外壳;所述内核为氧含量从核心至表面逐步增加的SiOx,其中x=0.3~1;所述外壳为氧含量和锂含量从外壳表面至外壳内部逐渐降低的锂硅酸盐。通过在惰性气氛下煅烧SiOx材料,对其进行预处理。预处理后的SiOx材料和锂源在惰性气氛下高温固相烧结,得到SiOx/锂硅酸盐复合材料。本发明提供的制备SiOx/锂硅酸盐复合材料的工艺对原材料的要求较低,工艺中各项反应条件简单易控制,工艺流程短、成本低、产率高;包含前述SiOx/锂硅酸盐复合材料作为负极的锂离子电池具有高的首次库伦效率、比容量以及优良的循环性能。
-
公开(公告)号:CN114703545A
公开(公告)日:2022-07-05
申请号:CN202210384559.3
申请日:2022-04-13
申请人: 中南大学 , 巴斯夫杉杉电池材料有限公司
IPC分类号: C30B29/22 , C30B1/02 , H01M4/505 , H01M4/525 , H01M10/0525
摘要: 本发明公开了一种熔渗分散法制备高容量单晶三元正极材料的方法,包括如下步骤:将前驱体与含锂组合熔盐均匀混合,在氧气氛围中高温烧结;对烧结后的材料进行破碎、过筛,并通过溶剂分散洗涤除去冗余熔盐,实现材料的纯化;洗涤后的材料经过干燥、破碎、过筛,得到高容量、小粒径单晶三元正极材料。本发明提供的一种熔渗分散法制备高容量单晶三元正极材料的方法有效地降低了单晶三元正极材料的合成温度,制备的亚微米级材料分散性好,有效地克服了传统方法中颗粒易团聚的缺点,所得材料形态良好,颗粒尺寸一致性好,结晶性好,锂镍混排低,首次库伦效率,放电比容量高,循环性能好,整个生产流程周期短,工艺简单,易于进行工业化推广等优点。
-
公开(公告)号:CN112919552B
公开(公告)日:2022-04-15
申请号:CN202110116149.6
申请日:2021-01-28
申请人: 中南大学
IPC分类号: C01G53/00 , H01M4/505 , H01M4/525 , H01M10/0525 , B01J6/00
摘要: 本发明涉及粉体材料制备方法的技术领域,具体涉及高振实密度多元氧化物前驱体及其制备方法与制备系统。所述制备方法包括:S1:按照多元氧化物中各金属元素的化学计量比将含有结晶水的金属盐加入至送液装置中进行搅拌加热熔化,获得亚熔盐液体;S2:将所述亚熔盐液体通过双流体雾化器进行雾化形成雾化液滴,利用压缩气体将所述雾化液滴带入流化床热解炉进行热解;S3:将步骤S2的热解产物通过集尘器进行收集,获得高振实密度多元氧化物前驱体材料。本发明将亚熔盐液体、双流体雾化和流化床热解相结合,实现了高振实密度多元氧化物前驱体的高效制备,且该前驱体元素分布均匀,粒径均一,纯度高,具有良好球形形貌。
-
公开(公告)号:CN113651363A
公开(公告)日:2021-11-16
申请号:CN202110958821.6
申请日:2021-08-20
申请人: 中南大学
IPC分类号: C01G45/00 , C01G45/02 , B82Y40/00 , H01M4/505 , H01M10/0525
摘要: 本发明涉及储能材料技术领域,具体涉及预锂化剂LiMnO2材料的制备方法。本发明采用喷雾热解法将锰源溶解物热解为纳米多孔前驱体,并结合离子交换法合成最终产物预锂化剂LiMnO2,以解决现有合成工艺复杂、效率低以及现有的LiMnO2产物不均匀、纯度低且能量密度低的问题。和现有技术相比,本发明降低了反应难度,反应简单,过程可控,合成快,生产成本低,安全性能高。合成的LiMnO2预锂化剂,其容量更高、首效更低。
-
-
-
-
-
-
-
-
-