一种用于囚禁离子的小型真空装置和方法

    公开(公告)号:CN112582247B

    公开(公告)日:2023-09-12

    申请号:CN202011466758.6

    申请日:2020-12-14

    Abstract: 本申请公开了一种用于囚禁离子的小型真空装置和方法,所述小型真空装置包含泵组接口、馈电法兰、石英窗口、真空腔体;所述真空腔体包含顺序连接的第一腔体、第二腔体、第三腔体;所述泵组接口,用于连接真空泵组;所述馈电法兰位于所述真空腔体的两端,第一馈电法兰对安装于第一腔体内的电子枪进行馈电;电子枪产生的电子束经位于第二腔体内的离子阱进入第三腔体;第二馈电法兰对安装于第三腔体内的炉子馈电;所述石英窗口位于第二腔体壁。所述方法包含抽真空、对准、加热、加交变射频和静电场的步骤,使离子囚禁于离子阱中心。本申请解决目前离子微波频标用囚禁离子真空装置体积较大、囚禁离子数较少等问题。

    一种弱信号的数字锁定方法、系统、电子设备

    公开(公告)号:CN116455390A

    公开(公告)日:2023-07-18

    申请号:CN202310385406.5

    申请日:2023-04-12

    Abstract: 本说明书公开了一种弱信号的数字锁定方法、系统、电子设备,涉及微波频标领域,旨在解决汞离子微波频标输出信号不稳定的问题。本发明方法包括:将汞离子微波频标的汞离子在离子阱内囚禁后,通过汞灯将汞离子从基态跃迁至激发态,并采集汞离子跃迁的荧光信号;对汞离子进行不同频率的微波扫描,得到不同频率下的荧光信号,并进行拟合,得到汞离子的跃迁谱线;据跃迁谱线,获取跃迁谱线中心两侧的半高宽处对应的频率,分别作为第一频率、第二频率;将微波在第一频率与第二频率之间跳频,并测量光子计数值;基于光子计数值计算第二偏差信号;基于第二偏差信号,计算汞离子微波频标的输出信号。本发明实现了汞离子微波频标设定频率的信号的高稳定输出。

    一种用于汞离子微波频标的滤光装置、系统及方法

    公开(公告)号:CN111049519B

    公开(公告)日:2022-09-23

    申请号:CN201911376343.7

    申请日:2019-12-27

    Abstract: 本发明公开一种用于汞离子微波频标的滤光装置、系统及方法,该滤光装置包括两端开口的通道式壳体;分别配置在壳体两开口端面的第一透光体和第二透光体;壳体、第一透光体和第二透光体形成中空的密封结构;密封结构内的填充有工作元素和缓冲气体,本发明采用了滤光系统,对汞原子光谱大量吸收,而透过大部分汞离子谱线,从而降低汞无极灯的原子谱线辐射,提高汞离子谱线与原子谱线的辐射强度比,大大提高信噪比,提升激发离子能级跃迁的效率,从而提高整钟性能。

    一种CPT原子钟频率同步控制方法及系统

    公开(公告)号:CN109474276B

    公开(公告)日:2022-09-23

    申请号:CN201811585168.8

    申请日:2018-12-24

    Abstract: 本发明公开了一种CPT原子钟频率同步控制方法及系统,所述方法包括对CPT原子钟输出频率分频产生输出秒脉冲信号;通过所述输出秒脉冲信号和同步端口的输入秒脉冲信号的脉冲宽度比对,检测所述输入秒脉冲信号的有效性;当检测到所述输入秒脉冲信号有效时,得到所述输出秒脉冲信号和所述输入秒脉冲信号的时差数字量;根据所述时差量确定是否需要纠正频率,若是,则根据所述时差量得到频率纠偏反馈量,以根据所述频率纠偏反馈量调整所述CPT原子钟输出频率,本发明可实现CPT原子钟自动、快速的频率同步。

    一种双同位素汞离子微波频标装置

    公开(公告)号:CN114389604A

    公开(公告)日:2022-04-22

    申请号:CN202111475596.7

    申请日:2021-12-06

    Abstract: 本发明公开了一种双同位素汞离子微波频标装置,所述装置包括:连接设置的氦气瓶、氦漏、汞199同位素炉子和汞201同位素炉子;汞199同位素炉子和汞201同位素炉子分别通过不锈钢管道与混合离子阱连接;混合离子阱的第一端面垂直连接有第一光路整形装置和第二光路整形装置,第一光路整形装置入光侧连接有汞198抽运谱灯,第二光路整形装置入光侧连接有汞202抽运谱灯;光子收集装置设置于所述混合离子阱端面;伺服控制装置通过光子收集装置接收跃迁荧光信号得到误差电压,通过线缆将误差电压输入至本振的电压输入端,调节本振的频率输出,其输出端分别通过29.9GHz倍频链路和40.5GHz连接至第一角锥喇叭和第二角锥喇叭,通过第一角锥喇叭和第二角锥喇叭辐射至混合离子阱。

    一种高稳定频率源,太赫兹频率产生实验装置及使用方法

    公开(公告)号:CN112763084A

    公开(公告)日:2021-05-07

    申请号:CN202011498619.1

    申请日:2020-12-17

    Abstract: 本发明公开一种高稳定频率源,太赫兹频率产生实验装置及使用方法,包括:连续激光器,所述连续激光器输出连续激光,经过分束镜分为透射光与反射光两路,透射光输出后照射到光电导天线上;飞秒激光频率梳,用于输出飞秒激光,与所述反射光经过合束镜合束后入射到光栅上;光电探测器,用于接收光栅反射的连续激光的反射光和飞秒激光频率梳相应梳齿频率成分的激光,探测到连续激光与飞秒激光的拍频信号;锁相环电路,用于接收所述拍频信号,与原子钟输出的参考信号鉴相后作为误差信号,输出反馈控制信号控制连续激光器的输出激光频率,使其锁定在飞秒激光频率梳相应梳齿的激光频率上,本发明可以大幅提升现有太赫兹频率源的频率稳定性与准确度。

    一种原子泡中缓冲气体的检测方法及设备

    公开(公告)号:CN108287150B

    公开(公告)日:2021-02-09

    申请号:CN201711272812.1

    申请日:2017-12-06

    Abstract: 本申请公开了一种原子泡的缓冲气体的测量方法及设备,包括:激光器、第一光探测器、第二光探测器和测量控制器,激光器,用于发射至少一个频率的光波;第一光探测器,用于接收激光器发射的光波,并将光波转换为第一电信号,将第一电信号发送给测量控制器;第二光探测器,用于接收从原子泡中透射出来的光,并将光转换为第二电信号,将第二电信号发送给测量控制器,所述光为所述激光器发射的所述光波透射至所述原子泡后被所述缓冲气体吸收之后的透射光;测量控制器,用于根据第一电信号和第二电信号,测量所述缓冲气体的成分和含量。通过原子吸收谱的吸收量来确定原子泡中缓冲气体的含量,有效解决了原子泡中缓冲气体的含量无法精确测量的问题。

    一种高稳定度光电振荡器及控制方法

    公开(公告)号:CN108879295B

    公开(公告)日:2020-09-01

    申请号:CN201810884116.4

    申请日:2018-08-06

    Abstract: 本申请公开了一种高稳定度光电振荡器,包括激光器、调制单元、偏振单元、第一FP标准具、第二FP标准具、光电转换单元、放大单元、滤波单元、耦合单元组成的振荡回路。调制激光信号分解为第一、第二偏振光信号,分别经第一FP标准具和第二FP标准具生成两路峰值波长不同的光信号,经光电转换单元输出微波振荡信号合并输入至放大单元;再经滤波单元、耦合单元送至调制单元。本发明还包含控制方法,调节第一偏振光、第一FP标准具、第二偏振光、第二FP标准具的角度、位置,使所述微波振荡信号的Q值最大。本发明可解决光电振荡器生成的微波振荡信号稳定度容易受到温度和压力变化影响的不足,实现结构简单、稳定性高的微波源。

    一种微波频标离子数量的检测方法及装置

    公开(公告)号:CN108254619B

    公开(公告)日:2020-07-17

    申请号:CN201711273698.4

    申请日:2017-12-06

    Abstract: 本申请公开了一种微波频标离子数量的检测方法及装置,解决了现有技术检测微波频标离子数量检测精度低、难度大、对离子反应不够灵敏且不利于集成和小型化的问题。该检测方法根据四极线型离子阱内电势分布方程推算离子的慢运动频率,再确定检测信号的中心频率为慢运动频率,扫描范围为±10kHz,将检测信号加载到四极线型离子阱的端电极上,四极线型离子阱的另一个端电极接地。检测信号的输入频率在四极线型离子阱处被吸收,根据透射频谱计算离子数量。在检测时计算机控制晶体振荡器产生检测信号,检测信号经滤波放大后经分压电阻输入四极线型离子阱,输入频率被离子阱内离子吸收后输出透射信号,透射信号经滤波与检测信号锁相放大传输至计算机处理。

    一种电场探测器
    10.
    发明授权

    公开(公告)号:CN108982975B

    公开(公告)日:2020-06-30

    申请号:CN201810785984.7

    申请日:2018-07-17

    Abstract: 本申请公开了一种电场探测器,能够对两路激光器的偏振态进行控制,减小吸收峰提高信噪比。所述电场探测器包括半导体激光器、第一偏振片、原子气室、第二偏振片、分束器、光探测器、锁相放大器、信号发生器、偏振控制器、第三偏振片、调制器和耦合激光器。第一偏振片、原子气室、第二偏振片、分束器和光探测器设置在半导体激光器发射的第一光信号光路上。调制器、第三偏振片和偏振控制器设置在耦合激光器发射的第二光信号光路上。信号发生器连接锁相放大器和调制器。偏振控制器控制第二光信号经过第二偏振片进入原子气室。原子气室为碱金属气体与第一光信号和第二光信号相互作用和第一光信号在待测电场辐射下autler‑townes分裂提供场所。锁相放大器输出信号。

Patent Agency Ranking