一种评价深空探测用材料综合辐射屏蔽能力的方法

    公开(公告)号:CN116482131B

    公开(公告)日:2024-08-13

    申请号:CN202310405984.0

    申请日:2023-04-17

    IPC分类号: G01N23/02

    摘要: 本发明公开了一种评价深空探测用材料综合辐射屏蔽能力的方法,属于深空探测技术与辐射防护领域。本发明目前地面采用60Co产生的γ射线对材料辐射屏蔽能力进行评价测试手段无法正确反馈屏蔽材料在实际深空辐射环境下的辐射屏蔽性能的现状。本发明针对轨道环境中电子(和/或质子)能量的能谱分布,利用仿真计算将能谱分类为完全屏蔽区、部分屏蔽区和剂量增强区和无效区四个能区,在各能量分区中选取合适能量点进行辐照测试,以单能辐照该分区贡献总剂量等效评价材料对该能量分区的屏蔽能力,最后利用分区屏蔽能力的实验数据和整个能谱的初始剂量获得材料的综合屏蔽能力。本发明可以分析屏蔽材料在轨道全能谱下综合辐射屏蔽能力,具有通用性和先进性。

    一种应用于月球表面的防尘黏附自清洁ZnO双层白色涂层及其制备方法

    公开(公告)号:CN118440548A

    公开(公告)日:2024-08-06

    申请号:CN202410684823.4

    申请日:2024-05-30

    IPC分类号: C09D133/00 C09D1/00 C09D7/61

    摘要: 本发明公开了一种应用于月球表面的防尘黏附自清洁ZnO双层白色涂层及其制备方法,属于空间特种功能材料领域。本发明将大粒径ZnO粉体材料(粒径为200nm‑600nm)与树脂粘结混合均匀制成白色浆料,最后通过刮涂技术将浆料覆盖在合金基板上,固化后,将低表面能改性剂改性后的小粒径ZnO粉体(20nm‑100nm)分散在乙醇与水的混合溶液中,利用喷涂技术在热控涂层表面形成透明防尘涂层,最终形成防尘黏附自清洁的ZnO双层白色涂层。通过小粒径ZnO改性的工艺条件、浆料的颜基比小粒径、ZnO改性的工艺条件及喷涂的工艺条件,可以控制涂层材料的组分及表面形貌。本发明应适用于航天器的实际任务环境,可用于深空探测等领域。

    一种耐紫外辐照、低太阳光谱吸收率的有机白色涂层材料及其制备方法

    公开(公告)号:CN118440547A

    公开(公告)日:2024-08-06

    申请号:CN202410684817.9

    申请日:2024-05-30

    IPC分类号: C09D133/00 C09D7/62 C09D5/32

    摘要: 本发明公开了一种耐紫外辐照、低太阳光谱吸收率的有机白色涂层材料及其制备方法,属于航天器热控材料领域。本发明要解决现有紫外辐照下热控涂层的性能稳定差的问题。本发明方法是利用ALD技术对ZnO粉体进行表面改性制备Y2O3@ZnO、CeO2@ZnO、La2O3@ZnO粉体材料,然后将稀土氧化物改性粉体材料(Y2O3@ZnO、CeO2@ZnO或La2O3@ZnO粉体材料)与有机粘合剂混合均匀制成白色浆料,最后通过喷涂技术将白色浆料喷涂在合金基板上,烘干后,得到所述白色涂层。本发明白色涂层的太阳吸收比低、发射率高,在极端条件(压力、温度、辐照)下的结构性能稳定、力学性能优异特性,适用于航天器的实际任务环境,可用于深空探测等领域。

    一种掺杂型钙钛矿锰氧化物智能热控涂层的多尺度设计方法

    公开(公告)号:CN118351991A

    公开(公告)日:2024-07-16

    申请号:CN202410438199.X

    申请日:2024-04-12

    摘要: 本发明公开了一种掺杂型钙钛矿锰氧化物智能热控涂层的多尺度设计方法;属于功能材料设计的技术领域。本发明要解决现有掺杂型钙钛矿锰氧化物的开发存在周期长,成本高的技术问题。方法如下:确定高温和低温状态下的LaMnO3晶体材料的晶胞模型;使用A原子取代不同位置处的La原子,建立掺杂材料的超晶胞模型;对超晶胞模型进行结构优化后自洽计算;计算光学常数;从微纳尺度构建具有微结构的钙钛矿智能热控涂层,基于计算获得的光学常数,利用时域有限差分方法计算掺杂型钙钛矿锰氧化物智能热控涂层的发射率。本发明方法可以显著减小实验过程中部分参数的选取范围,减少错误实验所造成的人物力损耗,提高智能热控涂层开发的效率。

    高效分离和动态表征的分子污染物原位分析检测装置

    公开(公告)号:CN117191924B

    公开(公告)日:2024-04-05

    申请号:CN202310969383.2

    申请日:2023-08-03

    IPC分类号: G01N27/62

    摘要: 一种高效分离和动态表征的分子污染物原位分析检测装置,属于分子污染物分析检测技术领域。本发明解决了现有的研究空间分子污染物组成的方法无法实现原位分离和实时动态分析的问题。加热辐射板安装在真空仓体的内侧壁,安装架转动安装在真空仓体的上部,污染物收集板的数量为多个且铺设在安装架的底端,石英晶体微天平的数量至少为两个且均嵌装在多个污染物收集板之间,且石英晶体微天平、热防护罩及分子污染物加热台由上到下正对布置,石英晶体微天平与QCM温度控制器电连接,质谱仪固装在真空仓体外部且安装架水平状态下石英晶体微天平、污染物收集板及质谱仪三者等高设置,真空仓体外部连接设置有真空泵,通过真空泵控制真空仓体内的真空度。

    一种具有热控功能的分级沸石分子筛吸附涂层及其可控制备方法

    公开(公告)号:CN116589919B

    公开(公告)日:2024-01-30

    申请号:CN202310440369.3

    申请日:2023-04-23

    摘要: 一种具有热控功能的分级沸石分子筛吸附涂层及其可控制备方法,属于功能涂层领域。本发明要解决现有现有沸石吸附材料孔隙易堵塞;大分子污染物吸附速率低、吸附量低的问题。本发明方法的步骤如下:制备分级多孔的沸石分子筛,与分散剂和有机硅树脂一共制备浆料,基材粗化后用无水乙醇超声清洗,擦拭干净,完成预处理,浆料超声处理后喷涂在预处理后的基材表面;然后室温下自然风干,分段固化,得到所述吸附涂层。本发明的分级沸石分子吸附涂层具有丰富的微孔和介孔组合而成的分级孔结构,其增加了有机分子污染物的传输扩散速率,避免有机污染物堵塞分子吸附涂层造成的失效问题,提高了大分子污染吸附容量,促进污染物分子的储存。

    一种深空探测用封装加固材料辐射屏蔽性能及宇航芯片抗辐射性能的评价方法

    公开(公告)号:CN117269205A

    公开(公告)日:2023-12-22

    申请号:CN202310405982.1

    申请日:2023-04-17

    IPC分类号: G01N23/02 G01N21/33

    摘要: 一种深空探测用封装加固材料辐射屏蔽性能及宇航芯片抗辐射性能的评价方法,属于航天与辐射防护领域。本发明针对目前地面采用60Co进行总剂量测试的手段无法正确反馈封装加固材料与芯片在实际深空辐射环境下的辐射屏蔽性能和运行状态的现状。本发明采用电子‑质子联用的测试方法,基于地面测试系统条件下尽可能还原航天器在轨运行时所处的真实深空辐射环境,并用于对抗辐射封装加固材料的防辐射和芯片抗辐射性能进行测试与评价,进而判断封装加固的电子器件是否满足实际应用条件下的抗辐射需求。本发明实现深空探测辐射环境中封装加固材料防辐射性能与芯片抗辐射性能评价的问题。

    OSR表面热控、耐磨一体化月尘防护涂层及其制备方法

    公开(公告)号:CN116590676A

    公开(公告)日:2023-08-15

    申请号:CN202310405973.2

    申请日:2023-04-17

    IPC分类号: C23C14/35 C23C14/10 C23C14/58

    摘要: 本发明公开了OSR表面热控、耐磨一体化月尘防护涂层及其制备方法,属于航空航天防尘涂层材料技术领域。本发明解决现有月尘防护涂层存在的耐用性差、环境适应性低和影响表面的热控性能的问题。本发明采用射频磁控溅射技术,在OSR表面上制备SiO2涂层,其中SiO2为底部涂层,再利用紫外臭氧处理,使SiO2涂层表面羟基化,以提升其后续与改性剂的结合能力,最后使用十八烷基三氯硅烷(Octadecyltrichlorosilane,OTS)进行表面改性,降低SiO2涂层的表面能,同时作为单分子自组装成膜的方式,OTS的改性不会改变SiO2涂层的表面粗糙度,减少了月尘在表面的吸附和沉积,进一步提高其月尘防护能力。

    一种具有强结合力的有机无机杂化黑色分子吸附涂层及其制备方法

    公开(公告)号:CN116589920A

    公开(公告)日:2023-08-15

    申请号:CN202310440383.3

    申请日:2023-04-23

    摘要: 本发明公开了一种有机无机杂化黑色分子吸附涂层及其制备方法,属于黑色分子吸附涂层材料领域。本发明要解决现有黑色吸附涂层在航天器应用期间自身可能会释放气体污染分子,空间环境稳定性较差的问题。本发明方法的步骤如下:对沸石分子筛粉加热处理;然后与黑色无机着色剂、粘结剂混匀干燥后球磨制备黑色粉末;然后与有机粘合剂和无机粘合剂混匀,制成喷涂液,喷涂在表面有底漆的基材上,得到所述涂层。本发明的黑色分子吸附涂层具有良好的吸附能力和杂散光功能,同时充分利用有机无机粘合剂的协同作用,既增加了沸石、黑色着色剂等无机材料与粘合剂之间的结合力,又提高了涂层的空间稳定性。