残差自适应压缩的高效通信联邦学习模型训练方法及系统

    公开(公告)号:CN119539028A

    公开(公告)日:2025-02-28

    申请号:CN202411362878.X

    申请日:2024-09-27

    Abstract: 本发明涉及分布式学习和无线通信技术领域,特别是一种残差自适应压缩的高效通信联邦学习模型训练方法及系统。客户端获取全局模型并更新;利用本地模型内存集和更新模型权重获得本地模型残差;对残差进行自适应稀疏压缩并传输至服务器;服务器选择可靠客户端进行模型权重预测和聚合;将更新后的全局模型广播至客户端,重复上述步骤直至收敛。本发明通过自适应压缩和可靠客户端选择,显著降低了通信开销,提高了模型收敛速度和最终性能。特别适用于资源受限的边缘计算场景,有效解决了联邦学习中的通信效率、模型性能和隐私保护等关键问题,为联邦学习的广泛应用提供了新的可能性。

    基于图神经网络的空天地网络流量卸载决策方法及系统

    公开(公告)号:CN118972900B

    公开(公告)日:2025-02-11

    申请号:CN202411460580.2

    申请日:2024-10-18

    Abstract: 本发明公开了基于图神经网络的空天地网络流量卸载决策方法及系统,涉及通信网络优化技术领域,包括:接收空天地一体化网络中的节点相关数据,将节点相关数据进行时间窗口划分,并进行特征提取,得到节点特征数据,其中,所述节点相关数据包括节点连接状态数据和节点间的实时流量数据;将节点特征数据输入至预先建立的图神经网络模型GNN内,通过对节点和边的特征进行编码和聚合,生成每个节点的表示向量,利用每个节点的表示向量对GNN进行训练,得到训练后的GNN;接收空天地一体化网络中的网络状态和节点特征,输入至训练后的GNN内,输出得到性能预测结果,基于性能预测结果,结合多目标优化技术,从而实现网络整体的流量最佳卸载。

Patent Agency Ranking