-
公开(公告)号:CN112260308B
公开(公告)日:2022-08-02
申请号:CN202011052526.6
申请日:2020-09-29
摘要: 本发明实施例提供一种地热‑光伏‑储热联合运行方法及系统,该方法包括:根据地热电站、光伏电站和储热电站之间的联合组合方式,基于静态合作博弈,构建基于地热‑光伏‑储热电站的联合运行架构;通过所述联合运行架构,获取所述地热电站、所述光伏电站和所述储热电站的最优联合发电模式。本发明实施例通过对地热、光伏和储能三者合作形成的不同联盟的支付与收益进行建模,为三者之间联合运行提供最合理的收益分配方法,充分发挥多能协同互补优势,提高系统能量综合利用效率、稳定性和合理性,实现综合能源系统安全、经济和高效运行。
-
公开(公告)号:CN107965932A
公开(公告)日:2018-04-27
申请号:CN201711001926.2
申请日:2017-10-24
申请人: 国家电网公司 , 全球能源互联网研究院 , 国网江苏省电力公司信息通信分公司 , 青海大学 , 清华大学
CPC分类号: Y02E10/40
摘要: 本发明涉及太阳能光热技术领域,尤其涉及一种太阳能集热和储热的太阳能系统及方法。系统包括聚光集热系统和蓄热循环系统,其中所述聚光集热系统包括塔架、多个聚光反射定日镜以及多个平面反射镜;所述蓄热循环系统包括驱动装置、集热换热器、常温工质储存装置、高温工质储存装置和蓄热工质。本发明通过对太阳能集热产生恒定温度热源,并可向外提供稳定可控的热能供应,具有温度可调可控、输出稳定、光热效率高和便于应用的特点。
-
公开(公告)号:CN106807198A
公开(公告)日:2017-06-09
申请号:CN201611249072.5
申请日:2016-12-29
摘要: 本发明涉及工业排放处理技术领域,尤其涉及一种用于碳纤维热解的空气除尘净化系统。该系统包括粉尘清理子系统、废气净化子系统、电气控制子系统以及气源控制子系统,其中所述粉尘清理子系统包括布袋除尘器,所述布袋除尘器的进口和出口分别连接第一气体输送管道和第二气体输送管道,所述废气净化子系统包括支撑底座,所述支撑底座上设有溶液池,在所述支撑底座的一侧安装有加料梯,所述溶液池的入口连接所述第二气体输送管道,所述溶液池的出口连接排气管道。该系统能够去除烟气中的粉尘颗粒和有毒气体,使得最终排放到空气中的气体达到排放标准,具有排出气体处理效果好,处理流程可控性高,成本低的优点。
-
公开(公告)号:CN112260308A
公开(公告)日:2021-01-22
申请号:CN202011052526.6
申请日:2020-09-29
摘要: 本发明实施例提供一种地热‑光伏‑储热联合运行方法及系统,该方法包括:根据地热电站、光伏电站和储热电站之间的联合组合方式,基于静态合作博弈,构建基于地热‑光伏‑储热电站的联合运行架构;通过所述联合运行架构,获取所述地热电站、所述光伏电站和所述储热电站的最优联合发电模式。本发明实施例通过对地热、光伏和储能三者合作形成的不同联盟的支付与收益进行建模,为三者之间联合运行提供最合理的收益分配方法,充分发挥多能协同互补优势,提高系统能量综合利用效率、稳定性和合理性,实现综合能源系统安全、经济和高效运行。
-
公开(公告)号:CN106750506B
公开(公告)日:2019-07-12
申请号:CN201611247334.4
申请日:2016-12-29
IPC分类号: C08J11/00 , C08K7/06 , C08L63/00 , C08L61/06 , C08L67/06 , C08L75/04 , C08L79/08 , C08L61/24 , C08L61/00
摘要: 本发明属于碳纤维复合材料的回收领域,尤其涉及一种两步热处理回收碳纤维的方法。该方法包括预处理和精处理两个过程;所述预处理过程为:将碳纤维复合材料加热至450℃~600℃,并保持3~4小时,然后撤去热源,冷却;所述精处理过程为:将经过所述预处理的碳纤维复合材料加热至500℃~550℃,并保持2~3小时,然后撤去热源,冷却,最终得到的固态产物即为回收后的碳纤维。本发明的回收方法能够得到干净的、受损程度小的、长而有序的高附加值的碳纤维。所述碳纤维增强复合材料的尺寸和形状不受限制,能连续进行碳纤维的回收,且可以处理大尺寸的碳纤维复合材料,因而提高了回收效率,节约了资源,节省了回收成本。
-
公开(公告)号:CN106810711A
公开(公告)日:2017-06-09
申请号:CN201611247331.0
申请日:2016-12-29
摘要: 本发明涉及碳纤维材料的回收,尤其涉及一种从废旧碳纤维增强复合材料中回收碳纤维的方法。所述从废旧碳纤维增强复合材料中回收碳纤维的方法为:将所述碳纤维增强复合材料预处理后,在400~500℃下进行70~110min的加热处理,所得固态产物即为回收后的碳纤维。本发明所述方法工艺简单,步骤少,能耗低,回收得到的碳纤维表面光滑,性能优异,纯度高,且大大提高了回收率,在废旧碳纤维增强复合材料领域,尤其是在退役飞机的废旧碳纤维增强复合材料回收领域具有重要的应用推广价值。
-
公开(公告)号:CN112260309B
公开(公告)日:2022-08-26
申请号:CN202011056947.6
申请日:2020-09-29
摘要: 本发明实施例提供一种光伏电站可信容量的计算方法及装置,该方法包括:将储热发电循环功率和地热电站发电输出功率输入光伏‑地热电站联合运行调度模型得到光伏电站可信输出功率;根据所述光伏电站输出功率计算光伏电站可信容量;其中,所述光伏‑地热电站联合运行调度模型为最大化系统收益目标函数,包括含储热干热岩地热电站约束、光伏友好并网约束和光伏电站输出功率约束,通过建立光伏‑干热岩地热电站联合运行调度模型,最大化系统发电收益,并限定约束条件,从而定量分析光伏波动率对光伏可信容量的影响。综合利用干热岩地热能潜力,提高干热岩地热电站运行灵活性,提升光伏电站接入电网的可信容量。
-
公开(公告)号:CN106807198B
公开(公告)日:2019-10-18
申请号:CN201611249072.5
申请日:2016-12-29
摘要: 本发明涉及工业排放处理技术领域,尤其涉及一种用于碳纤维热解的空气除尘净化系统。该系统包括粉尘清理子系统、废气净化子系统、电气控制子系统以及气源控制子系统,其中所述粉尘清理子系统包括布袋除尘器,所述布袋除尘器的进口和出口分别连接第一气体输送管道和第二气体输送管道,所述废气净化子系统包括支撑底座,所述支撑底座上设有溶液池,在所述支撑底座的一侧安装有加料梯,所述溶液池的入口连接所述第二气体输送管道,所述溶液池的出口连接排气管道。该系统能够去除烟气中的粉尘颗粒和有毒气体,使得最终排放到空气中的气体达到排放标准,具有排出气体处理效果好,处理流程可控性高,成本低的优点。
-
公开(公告)号:CN107939654A
公开(公告)日:2018-04-20
申请号:CN201711002558.3
申请日:2017-10-24
申请人: 国家电网公司 , 全球能源互联网研究院 , 国网江苏省电力公司信息通信分公司 , 青海大学 , 清华大学
摘要: 本发明涉及储能领域,公开了一种冷-热-电联供的压缩空气储能系统。储能模式,系统通过压缩机组消耗电能将压缩空气储存于储气装置,通过冷却器回收压缩过程中产生的热量并储存于储热器;释能模式,系统通过回热器将储气装置中的空气加热,通过热空气驱动透平发电机组发电,并将膨胀过程中产生的冷量储存于储冷器中;供热模式,系统通过储热器向系统外供热;供冷模式,系统通过储冷器向系统外供冷。系统可单一模式运行或多模式混合运行。同时,系统可通过预热器或储热器回收工业余热、废热和太阳能等热源,或通过再冷器或储冷器回收工业废冷和LNG气化等冷量,利用简单系统满足多样化的能量需求。
-
公开(公告)号:CN106750506A
公开(公告)日:2017-05-31
申请号:CN201611247334.4
申请日:2016-12-29
IPC分类号: C08J11/00 , C08K7/06 , C08L63/00 , C08L61/06 , C08L67/06 , C08L75/04 , C08L79/08 , C08L61/24 , C08L61/00
CPC分类号: C08J11/00 , C08J2361/00 , C08J2361/06 , C08J2361/24 , C08J2363/00 , C08J2367/06 , C08J2375/04 , C08J2379/08
摘要: 本发明属于碳纤维复合材料的回收领域,尤其涉及一种两步热处理回收碳纤维的方法。该方法包括预处理和精处理两个过程;所述预处理过程为:将碳纤维复合材料加热至450℃~600℃,并保持3~4小时,然后撤去热源,冷却;所述精处理过程为:将经过所述预处理的碳纤维复合材料加热至500℃~550℃,并保持2~3小时,然后撤去热源,冷却,最终得到的固态产物即为回收后的碳纤维。本发明的回收方法能够得到干净的、受损程度小的、长而有序的高附加值的碳纤维。所述碳纤维增强复合材料的尺寸和形状不受限制,能连续进行碳纤维的回收,且可以处理大尺寸的碳纤维复合材料,因而提高了回收效率,节约了资源,节省了回收成本。
-
-
-
-
-
-
-
-
-