-
公开(公告)号:CN113469415B
公开(公告)日:2023-04-07
申请号:CN202110631952.3
申请日:2021-06-07
Applicant: 湖北工业大学
IPC: G06Q10/04 , G06F18/24 , G06F18/214 , H04L41/147 , H04L41/142
Abstract: 本发明提供了一种网络流量预测方法和计算机设备,网络流量预测方法应用于预测模型,预测模型包括:图卷积‑自注意力模块、全连接层和激活层,网络流量预测方法包括:获取网络流量,确定预处理流量组;将预处理流量组输入图卷积‑自注意力模块得到目标流量特征组;将目标流量特征组输入全连接层得到融合流量特征;基于激活层和融合流量特征确定预测结果。本发明中的图卷积‑自注意力模块,可以提取复杂多变的网络流量数据的空间特征,计算网络流量特征权重,解决网络流量不同数据之间的相互影响力不同的问题,较大地提升网络流量预测的准确率,也就是说,通过图卷积‑自注意力模块可以对非线性的复杂动态网络流量进行预测,并且准确率高。
-
公开(公告)号:CN113469415A
公开(公告)日:2021-10-01
申请号:CN202110631952.3
申请日:2021-06-07
Applicant: 湖北工业大学
Abstract: 本发明提供了一种网络流量预测方法和计算机设备,网络流量预测方法应用于预测模型,预测模型包括:图卷积‑自注意力模块、全连接层和激活层,网络流量预测方法包括:获取网络流量,确定预处理流量组;将预处理流量组输入图卷积‑自注意力模块得到目标流量特征组;将目标流量特征组输入全连接层得到融合流量特征;基于激活层和融合流量特征确定预测结果。本发明中的图卷积‑自注意力模块,可以提取复杂多变的网络流量数据的空间特征,计算网络流量特征权重,解决网络流量不同数据之间的相互影响力不同的问题,较大地提升网络流量预测的准确率,也就是说,通过图卷积‑自注意力模块可以对非线性的复杂动态网络流量进行预测,并且准确率高。