-
公开(公告)号:CN111488889B
公开(公告)日:2023-11-07
申请号:CN202010292008.5
申请日:2020-04-14
Applicant: 郑州轻工业大学
IPC: G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08 , G06N3/063 , G06N20/00
Abstract: 本发明公开了一种用于图像边缘提取的智能图像处理仪,具体涉及图像处理领域,包括图像集获取模块和FPGA芯片,图像集获取模块的输出端电性连接有AD转换电路,AD转换电路的输出端电性连接有矩阵信息提取器,矩阵信息提取器的输出端电性连接有特征提取模块和原图像数据输出,特征提取模块的内部设有图像信息分析模块、深度神经网络、比对模块和图像分类输出。本发明设置人工智能尽心预先的图像分类,对待提取的图像进行大批量的分类,并将图像信息数据化,无需图像边缘提取算法进行图像识别和图像优化,且利用FPGA芯片作为处理电路,可提高图像的定位精度,同时减少图像后续处理中的数据量,方便图像边缘提取的有效快速运行。
-
公开(公告)号:CN111445425A
公开(公告)日:2020-07-24
申请号:CN202010378343.7
申请日:2020-05-07
Applicant: 郑州轻工业大学
Abstract: 本发明涉及AI芯片技术领域,且公开了一种用于AI芯片的智能图像处理方法,包括如下步骤:S1.工作现场获取场景图像,对图像进行采集;S2.将模拟图像信号数字化后传输给计算机处理并存储;S3.将S2中获取得到的模拟图像进行重建,进而获取模态图像;S4.根据S3中重建得到的模态图像进行噪声消除处理;S5.根据S4中得到的模态图像进行几何形变处理;S6.根据S5中的得到的模态图像进行彩色失调处理;S7.对S6中获取的模态图像进行几何校正。该用于AI芯片的智能图像处理方法,解决了因受到设备和环境因素的影响,往往会受到不同程度的干扰,如噪声、几何形变、彩色失调等,都会妨碍接下来的处理环节的问题,满足了使用的需要。
-
公开(公告)号:CN111198959B
公开(公告)日:2023-03-28
申请号:CN201911396473.7
申请日:2019-12-30
Applicant: 郑州轻工业大学
IPC: G06F16/51 , G06F16/55 , G06N3/0464 , G06N3/084
Abstract: 本发明提出了一种基于卷积神经网络的两阶段图像检索方法,其步骤如下:在VGG16网络的卷积层和密集连接层之间添加特征提取层构建卷积神经网络模型;利用训练集和验证集对卷积神经网络模型进行训练,利用反向传播调整卷积神经网络模型的参数;将测试集输入训练好的卷积神经网络模型,利用哈希函数映射将特征向量映射得到二进制哈希码,利用softmax分类函数对密集连接层输出的向量进行分类,构建二级索引库;将待检索图像输入训练好的卷积神经网络模型,进行第一阶段的检索,进行第二阶段检索。本发明在相应的图像类别下进一步搜索,通过分类优化检索实现了图像的精确分类和快速检索,加快了相似特征的检索速度,提高了查询效率。
-
公开(公告)号:CN112258547A
公开(公告)日:2021-01-22
申请号:CN202011119457.6
申请日:2020-10-19
Applicant: 郑州轻工业大学
IPC: G06T7/20
Abstract: 本发明属于一种基于逆透视投影变换和跟车模型的车辆三维轨迹优化方法,包括基于逆透视投影变换的车辆三维轨迹坐标求解、基于跟车模型的车辆运动坐标预测、联合逆透视投影变换和跟车模型的车辆三维轨迹坐标优化校正三部分,本发明结合逆透视投影变换方法并引入交通仿真中的跟车模型,实现了一种基于逆透视投影变换和跟车模型的车辆三维轨迹优化重建,能自动进行结果修正、实现车辆轨迹重建。
-
公开(公告)号:CN111125416A
公开(公告)日:2020-05-08
申请号:CN201911378972.3
申请日:2019-12-27
Applicant: 郑州轻工业大学
IPC: G06F16/583 , G06K9/62
Abstract: 本发明提出了一种基于多特征融合的图像检索方法,用以解决基于单一特征的图像检索方法无法满足用户的查询需求的。本发明的步骤为:利用滤波方法对待检索图像进行降噪处理;利用改进的HSV颜色空间进行特征量化提取待检索图像的全局特征;对降噪后的图像进行多尺度形态梯度提取待检索图像的局部特征;将全局特征和局部特征进行自适应融合得到自适应融合图像;对自适应融合图像进行哈希编码,通过哈希码计算待检索图像与数据库中所有图像的相似度,选择与待检索图像似度最高的前几个图像作为待检索图像的检索结果。本发明充分提取图像的特征点,并在局部特征提取过程中,更加全面地保护图像的边缘信息,提高了检索的准确性,缩短了检索时间。
-
公开(公告)号:CN111198959A
公开(公告)日:2020-05-26
申请号:CN201911396473.7
申请日:2019-12-30
Applicant: 郑州轻工业大学
Abstract: 本发明提出了一种基于卷积神经网络的两阶段图像检索方法,其步骤如下:在VGG16网络的卷积层和密集连接层之间添加特征提取层构建卷积神经网络模型;利用训练集和验证集对卷积神经网络模型进行训练,利用反向传播调整卷积神经网络模型的参数;将测试集输入训练好的卷积神经网络模型,利用哈希函数映射将特征向量映射得到二进制哈希码,利用softmax分类函数对密集连接层输出的向量进行分类,构建二级索引库;将待检索图像输入训练好的卷积神经网络模型,进行第一阶段的检索,进行第二阶段检索。本发明在相应的图像类别下进一步搜索,通过分类优化检索实现了图像的精确分类和快速检索,加快了相似特征的检索速度,提高了查询效率。
-
公开(公告)号:CN111488889A
公开(公告)日:2020-08-04
申请号:CN202010292008.5
申请日:2020-04-14
Applicant: 郑州轻工业大学
Abstract: 本发明公开了一种用于图像边缘提取的智能图像处理仪,具体涉及图像处理领域,包括图像集获取模块和FPGA芯片,图像集获取模块的输出端电性连接有AD转换电路,AD转换电路的输出端电性连接有矩阵信息提取器,矩阵信息提取器的输出端电性连接有特征提取模块和原图像数据输出,特征提取模块的内部设有图像信息分析模块、深度神经网络、比对模块和图像分类输出。本发明设置人工智能尽心预先的图像分类,对待提取的图像进行大批量的分类,并将图像信息数据化,无需图像边缘提取算法进行图像识别和图像优化,且利用FPGA芯片作为处理电路,可提高图像的定位精度,同时减少图像后续处理中的数据量,方便图像边缘提取的有效快速运行。
-
公开(公告)号:CN112258547B
公开(公告)日:2022-09-20
申请号:CN202011119457.6
申请日:2020-10-19
Applicant: 郑州轻工业大学
IPC: G06T7/20
Abstract: 本发明属于一种基于逆透视投影变换和跟车模型的车辆三维轨迹优化方法,包括基于逆透视投影变换的车辆三维轨迹坐标求解、基于跟车模型的车辆运动坐标预测、联合逆透视投影变换和跟车模型的车辆三维轨迹坐标优化校正三部分,本发明结合逆透视投影变换方法并引入交通仿真中的跟车模型,实现了一种基于逆透视投影变换和跟车模型的车辆三维轨迹优化重建,能自动进行结果修正、实现车辆轨迹重建。