摘要:
Apparatuses and systems enable power transfer from one or more energy sources to one or more loads. The input power from the energy sources may be unregulated, and the output power to the loads is managed. The power transfer is based on a dynamic implementation of Jacobi's Law (also known as the Maximum Power Theorem). In some embodiments, the energy sources are selectively coupled and decoupled from the power transfer circuitry. In some embodiments, the loads are selectively coupled and decoupled from the power transfer circuitry. Power transfer to the loads is dynamically controlled.
摘要:
A control node enables distributed grid control. The control node monitors power generation and power demand at a point of common coupling (PCC) between a utility power grid and all devices downstream from the PCC. The control node can have one or more consumer nodes, which can be or include customer premises, and one or more energy sources connected downstream. The control node monitors and controls the interface via the PCC from the same side of the PCC as the power generation and power demand. The control can include adjusting the interface between the control node and the central grid management via the PCC to maintain compliance with grid regulations at the PCC.
摘要:
Distributed grid network intelligence enables data aggregation at a local control node. In a consumer node, a meter is on a consumer side of a point of common coupling (PCC). The meter can receive one or more external grid inputs and one or more local sensor inputs. The grid inputs can come from sources outside the PCC, and the local sensor inputs monitor conditions at the PCC and/or within the PCC. The meter can identify power demand within the PCC and calculate an output power to generate with a local power converter. The calculation is not simply based on power demand, but on aggregation information, including the one or more external grid inputs, the one or more local sensor inputs, and the power demand for the local load. The local power converter can then output power in accordance with the calculated output power.
摘要:
A power transfer system provides power factor conditioning of the generated power. Power is received from a local power source, converted to usable AC power, and the power factor is conditioned to a desired value. The desired value may be a power factor at or near unity, or the desired power factor may be in response to conditions of the power grid, a tariff established, and/or determinations made remotely to the local power source. Many sources and power transfer systems can be put together and controlled as a power source farm to deliver power to the grid having a specific power factor characteristic. The farm may be a grouping of multiple local customer premises. AC power can also be conditioned prior to use by an AC to DC power supply for more efficient DC power conversion.
摘要:
A power conversion system converges an output waveform toward a reference waveform representing an ideal version of the desired output waveform. The system receives characteristic information about shape and phase of a target periodic waveform, generates an output waveform, and compares the output waveform to the reference waveform. The comparison can result in correction signals to change the output hardware to change the output waveform to more closely match the reference waveform. The system can converge an output waveform for an ideal voltage or current waveform, and may introduce phase shifting. A power system can output a power signal having reduced harmonic distortion in the output waveform without performing a specific harmonic distortion analysis.