摘要:
Methods and systems for predicting crude oil blend compatibility and optimizing blends for increasing heavy crude oil processing are described. The method includes receiving ratios of physical parameters of crude oils for optimization of crude oil blend. The physical parameter ratios are based on Kinematic Viscosity (V), Sulphur (S), Carbon Residue (C), and American Petroleum Institute (API) gravity. The crude oil blend compatibility (K model) is determined and generated using the physical parameter ratios. The K model is developed by coefficients obtained by regression analysis between the ratios of physical parameters of known crude oils and composite compatibility measure determined from multiple compatibility test results of the known crude oils. The predicted crude oil blend compatibility can be used for optimizing heavy crude oil processing.
摘要:
Method(s) and a system for predicting the refining characteristics of an oil sample are described. The method of predicting the refining characteristics, such as distillate yield profile, processability, product quality or refinery processing cost, may include development of a prediction model based on regression analysis. The method may further include determining the physical properties of the oil sample and predicting the refining characteristics based on the developed prediction model. The determination of the physical properties of the oil sample includes determining at least one of Conradson Carbon Residue (CCR) content, Ramsbottom Carbon Residue (RCR) and Micro Carbon Residue (MCR).