摘要:
A process of forming a front-grid electrode on a silicon wafer having an ARC layer, comprising the steps: (1) printing and drying a metal paste A comprising an inorganic content comprising 0.5 to 8 wt.-% of glass frit and having fire-through capability, wherein the metal paste A is printed on the ARC layer to form a bottom set of thin parallel finger lines, (2) printing and drying a metal paste B comprising an inorganic content comprising 0.2 to 3 wt.-% of glass frit over the bottom set of finger lines, wherein the metal paste B is printed in a grid pattern which comprises (i) thin parallel finger lines forming a top set of finger lines superimposing the bottom set of finger lines and (ii) busbars intersecting the finger lines at right angle, and (3) firing the double-printed silicon wafer, wherein the inorganic content of metal paste B contains less glass frit plus optionally present other inorganic additives than the inorganic content of metal paste A.
摘要:
A process of forming a front-grid electrode on a silicon wafer having an ARC layer, comprising the steps: (1) printing and drying a metal paste A comprising an inorganic content comprising 0.5 to 8 wt.-% of glass frit and having fire-through capability, wherein the metal paste A is printed on the ARC layer in a grid pattern which comprises (i) thin parallel finger lines forming a bottom set of finger lines and (ii) busbars intersecting the finger lines at right angle, (2) printing and drying a metal paste B comprising an inorganic content comprising 0 to 3 wt.-% of glass frit over the bottom set of finger lines to form a top set of finger lines superimposing the bottom set of finger lines, and (3) firing the double-printed silicon wafer, wherein the inorganic content of metal paste B contains less glass frit plus optionally present other inorganic additives than the inorganic content of metal paste A.
摘要:
A process of forming a front-grid electrode on a silicon wafer having an ARC layer, comprising the steps: (1) printing and drying a metal paste A comprising an inorganic content comprising 0.5 to 8 wt.-% of glass frit and having fire-through capability, wherein the metal paste A is printed on the ARC layer to form a bottom set of thin parallel finger lines, (2) printing and drying a metal paste B comprising an inorganic content comprising 0 to 3 wt.-% of glass frit over the bottom set of finger lines forming a top set of finger lines superimposing the bottom set of finger lines, (3) printing and drying a metal paste C comprising an inorganic content comprising 0.2 to 3 wt.-% of glass frit to form busbars intersecting the finger lines at right angle, and (4) firing the triple-printed silicon wafer, wherein the inorganic content of metal paste B as well as that of paste C contains less glass frit plus optionally present other inorganic additives than the inorganic content of metal paste A.