摘要:
Embodiments of the present invention disclosed herein are directed to apparatuses and systems for reducing the image jump from a dynamic lens component. The apparatuses and systems disclosed herein may be used in ophthalmic devices, such as eye glasses or contact lenses, as well as any other suitable application. Embodiments provide a first apparatus that comprises a dynamic power zone having a periphery. The first apparatus further comprises a static power zone in optical communication with at least a portion of the dynamic power zone. The static power zone has a negative optical power at a first portion of the periphery of the dynamic power zone.
摘要:
Optical devices having a dynamic aperture and/or an apodization mask are provided. The aperture and/or mask may be provided by one or more electro-active elements, and may be used in an ophthalmic device that that is spaced apart from but in optical communication with an intraocular lens, a corneal inlay, a corneal onlay, or a spectacle lens that provide an optical power.
摘要:
Embodiments of the present invention relate to an electro-active element having a dynamic aperture. The electro-active element provides increased depth of field and may be used in a non- focusing ophthalmic device that that is spaced apart from but in optical communication with an intraocular lens, a corneal inlay, a corneal onlay, a contact lens, or a spectacle lens that provide an optical power. The electro-active element provides increased depth of field and may also be used in a focusing or non-focusing device such as an intraocular optic, an intraocular lens, a corneal inlay, a corneal onlay, or a contact lens which may or may not have an optical power. By changing the diameter of dynamic aperture either increased depth of field or increased light reaching the retina may be achieved.
摘要:
Aspects of the present invention provide a lens comprising a non- rotationally symmetric aspheric optical element, surface or feature and a rotationally symmetric aspheric optical element, surface or feature. The non- rotationally symmetric aspheric optical feature can be a progressive power region. The non-rotationally symmetric aspheric optical feature and rotationally symmetric aspheric optical feature can be in optical communication when located on different surfaces of a lens or can be collapsed to occupy a single surface of a lens. The non-rotationally symmetric aspheric optical feature and rotationally symmetric aspheric optical feature can each contribute to the add power of a lens. Distortion (e.g., astigmatism) of a lens of the present invention can be reduced (e.g., globally and/or locally) by optically combing the non-rotationally symmetric aspheric optical feature with the rotationally symmetric aspheric optical feature. Accordingly, the effective or useable vision zones of a lens of the present invention can be increased.
摘要:
Embodiments of the present invention relate to a multifocal lens having a diffractive optical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
摘要:
An adapter for a spectacle frame is disclosed which is configured for enabling the spectacle frame to operate and control electro-active lenses housed therein. In particular, the spectacle frame may allow electro-active lenses housed therein to focus and be controlled both automatically and manually with heretofore unrealized results.
摘要:
Embodiments of the present invention relate to a multifocal lens having a mostly spherical power region and a progressive optical power region. Embodiments of the present invention provide for the proper alignment and positioning of each of these regions, the amount of optical power provided by each of the regions, the optical design of the progressive optical power region, and the size and shape of each of the regions. The combination of these design parameters allows for an optical design having less unwanted astigmatism and distortion as well as both a wider channel width and a shorter channel length compared to conventional PALs. Embodiments of the present invention may also provide a new, inventive far-intermediate distance zone and may further provide for increased vertical stability of vision within a zone of the lens.
摘要:
Devices suitable for charging implanted electronic devices are provided. A device suitable for charging one or more implanted electronic devices, specifically implanted ophthalmic devices, may include a wearable frame, one or more conductive coils, and a power source to provide a current to the conductive coil. When placed in proximity to an implanted device having a second conductive coil, the current in the conductive coil causes an induced current in the second conductive coil, which may be used to power the implanted electronic device.
摘要:
Aspects of the present invention provide multiple-layer (multi-layer) composite lenses comprising two or more materials and methods for making the same. A multi-layer composite lens of the present invention can use multiple surfaces (internal or external) to form optical elements that can contribute to a total desired add power. The multiple contributing optical elements can be aligned so as to be in optical communication to form multiple stable vision zones to enhance optical performance and the vision experience of the wearer. Distributing the total desired add power across multiple appropriately aligned optical elements that are in optical communication with one another can reduce the total distortion of the lens, minimize the number of optical discontinuities introduced, can reduce optical power jump as experienced by the wearer's eye when traversing any discontinuity, and can reduce the visibility of any introduced optical discontinuity as perceived by an observer looking at the wearer.
摘要:
A lens system is presented having a diffractive optical power region. The diffractive optical power region has a plurality of concentric surface relief diffractive structures. A greater portion of light incident on a diffractive structure near the center point contributes to the optical power than light incident on a diffractive structure peripherally spaced therefrom.