摘要:
Embodiments of a method and a system for recovering a metal, such as uranium, from a metal-containing material are disclosed. The metal-containing material is exposed to an extractant containing a liquid or supercritical-fluid solvent and an acid-base complex including an oxidizing agent and a complexing agent. Batches of the metal-containing material are moved through a series of stations while the extractant is moved through the stations in the opposite direction. After the extraction step, the metal is separated from the solvent, the complexing agent and/or other metals by exposing the extract to a stripping agent in a countercurrent stripping column. The complexing agent and the solvent exit the column and are separated from each other by reducing the pressure. The recovered complexing agent is recharged with fresh oxidizing agent and recombined with fresh or recovered solvent to form a recovered extractant, which is distributed through the extraction stations.
摘要:
The invention relates to a method for the selective recovery of uranium from a sulphate-based acidic aqueous solution of uranium containing iron and other metals by means of solvent extraction, in which the extractant used in the organic extraction solution is bis(2-ethylhexyl) phosphate and a liquid branched trialkyl phosphine oxide is the modifying agent. It is typical of the method that the uranium concentration in the feed solution is less than 50 mg/l and a reducing agent is introduced into the aqueous and/or extraction solution to prevent the permanent oxidation of iron to trivalent. In the method the majority of the extraction solution is circulated in a circuit consisting of the extraction stage and the storage tank and only a small part of the uranium-loaded extraction solution is routed to scrubbing and stripping.
摘要:
The invention relates to a process for reprocessing a spent nuclear fuel and for preparing a mixed uranium-plutonium oxide, which process comprises: a) the separation of the uranium and plutonium from the fission products, the americium and the curium that are present in an aqueous nitric solution resulting from the dissolution of the fuel in nitric acid, this step including at least one operation of coextracting the uranium and plutonium from said solution by a solvent phase; b) the partition of the coextracted uranium and plutonium to a first aqueous phase containing plutonium and uranium, and a second aqueous phase containing uranium but no plutonium; c) the purification of the plutonium and uranium that are present in the first aqueous phase; and d) a step of coconverting the plutonium and uranium to a mixed uranium/plutonium oxide. Applications: reprocessing of nuclear fuels based on uranium oxide or on mixed uranium-plutonium oxide.
摘要:
In a preferred embodiment, a process for extracting uranium from wet-process phosphoric acid (WPA), comprises separating uranium from WPA to produce a loaded uranium solution stream and a uranium depleted WPA stream. The loaded uranium solution stream is then contacted by with an ion exchange resin. Uranium species bound to the ion exchange resin are eluted by contacting the resin with a solution comprising anions to produce a loaded uranium eluant stream. The loaded uranium eluant stream is treated to provide a uranium containing product.
摘要:
Die vorliegende Erfindung betrifft die Verwendung von monodispersen, makroporösen Anionenaustauschern vom Typ I oder vom Typ II in IIydrometallurgieprozessen zur Gewinnung von Wertmetallen.
摘要:
Embodiments of a method and a system for recovering a metal, such as uranium, from a metal-containing material are disclosed. The metal-containing material is exposed to an extractant containing a liquid or supercritical-fluid solvent and an acid-base complex including an oxidizing agent and a complexing agent. Batches of the metal-containing material are moved through a series of stations while the extractant is moved through the stations in the opposite direction. After the extraction step, the metal is separated from the solvent, the complexing agent and/or other metals by exposing the extract to a stripping agent in a countercurrent stripping column. The complexing agent and the solvent exit the column and are separated from each other by reducing the pressure. The recovered complexing agent is recharged with fresh oxidizing agent and recombined with fresh or recovered solvent to form a recovered extractant, which is distributed through the extraction stations.