Abstract:
In one embodiment, a method includes receiving, in a system of an external verifier of a first network, a plurality of attestation reports and a plurality of attestation values from a plurality of reporting nodes of the first network, each of the plurality of attestation values randomly generated in the corresponding reporting node based on a common random seed value; determining whether at least a threshold number of the plurality of attestation values match; responsive to at least the threshold number of the plurality of attestation values matching, decrypting the plurality of attestation reports, processing the decrypted plurality of attestation reports to obtain aggregated telemetry data of the plurality of nodes, where identity of the plurality of nodes remains anonymous to the external verifier; and enforcing a security policy based at least in part on the aggregated telemetry data. Other embodiments are described and claimed.
Abstract:
This application is directed to trusted platform module certification and attestation utilizing an anonymous key system. In general, TPM certification and TPM attestation may be supported in a device utilizing integrated TPM through the use of anonymous key system (AKS) certification. An example device may comprise at least combined AKS and TPM resources that load AKS and TPM firmware (FW) into a runtime environment that may further include at least an operating system (OS) encryption module, an AKS service module and a TPM Certification and Attestation (CA) module. For TPM certification, the CA module may interact with the other modules in the runtime environment to generate a TPM certificate, signed by an AKS certificate, that may be transmitted to a certification platform for validation. For TPM attestation, the CA module may cause TPM credentials to be provided to the attestation platform for validation along with the TPM and/or AKS certificates.
Abstract:
Methods and apparatus to securely share data are disclosed. An example includes generating, at a first device of a first user of cloud services, an archive file representative of a drive of the first device; encrypting, via a processor, the archive file to form an encrypted archive file; and conveying the encrypted archive file to a cloud service provider, the encrypted archive file to be decrypted by a second device of a second user of the cloud services, the decrypted archive file to be mounted to an operating system of the second device.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to facilitate multi-factor authentication policy enforcement using one or more policy handlers. An example first policy handler to manage a global policy in a distributed environment includes a parser to identify a first sub-policy of the global policy that is capable of enforcement by the first policy handler, and an attester to sign the first sub-policy. The example first policy handler further includes a director to determine whether to forward the global policy to a second policy handler based on a signature status of the global policy, and to forward the global policy to the second policy handler when the signature status of the global policy is indicative of an unsigned second sub-policy.
Abstract:
The present disclosure is directed to content protection for Data as a Service (DaaS). A device may receive encrypted data from a content provider via DaaS, the encrypted data comprising at least content for presentation on the device. For example, the content provider may utilize a secure multiplex transform (SMT) module in a trusted execution environment (TEE) module to generate encoded data from the content and digital rights management (DRM) data and to generate the encrypted data from the encoded data. The device may also comprise a TEE module including a secure demultiplex transform (SDT) module to decrypt the encoded data from the encrypted data and to decode the content and DRM data from the encoded data. The SMT and SDT modules may interact via a secure communication session to validate security, distribute decryption key(s), etc. In one embodiment, a trust broker may perform TEE module validation and key distribution.
Abstract:
Technologies for supporting and implementing multiple digital rights management protocols on a client device are described. In some embodiments, the technologies include a client device having an architectural enclave which may function to identify one of a plurality of digital rights management protocols for protecting digital information to be received from a content provider or a sensor. The architectural enclave select a preexisting secure information processing environment (SIPE) to process said digital information, if a preexisting SIPE supporting the DRM protocol is present on the client. If a preexisting SIPE supporting the DRM protocol is not present on the client, the architectural enclave may general a new SIPE that supports the DRM protocol on the client. Transmission of the digital information may then be directed to the selected preexisting SIPE or the new SIPE, as appropriate.
Abstract:
A computing device is described. The computing device includes input/output (I/O) circuitry to receive sensory data and a trusted execution environment to monitor the I/O circuitry to detect one or more context characteristics of the computing device and to authenticate user identity based on context characteristics.
Abstract:
In an embodiment, the present invention includes a method for receiving a request for user authentication of a system, displaying an authentication image on a display of the system using a set of random coordinates, receiving a plurality of gesture input values from the user, and determining whether to authenticate the user based at least in part on the plurality of gesture input values. Other embodiments are described and claimed.
Abstract:
Systems and techniques for storage-class memory device including a network interface are described herein. A write for a network communication is received by the host interface of the memory device. Here, the network communication includes a header. The header is written to a non-volatile storage array managed by a memory controller. A network command is detected by the memory device. Here, the network command includes a pointer to the header in the non-volatile storage array. The header is retrieved from the non-volatile storage array and a packet based on the header is transmitted via a network interface of the memory controller.
Abstract:
Systems and techniques for digital twin framework for next generation networks are described herein. A digital twin model may be generated for physical nodes of an edge network. The digital twin model may include a digital twin for a physical node of the physical nodes. An error may be identified of the physical node or the digital twin for the physical node. The digital twin model may be updated to halt communication with the physical node or the digital twin of the physical node. A path may be created to another physical node or a digital twin of the another physical node in the digital twin model.