摘要:
It is an object of the invention to provide for an improved radiation treatment. According to a first aspect of the invention, this object is achieved by a method for determining a patient specific locally varying margin on a treatment target and/or an organ at risk in order to compensate for local intrafraction motion expected during a radiotherapy fraction to be delivered over a radiotherapy fraction time interval. The patient specific locally varying margin is determined based on a displacement and/or an estimate of the displacement of at least a first location and a second location on the treatment target and/or organ at risk. The method comprises steps of: acquiring a first medical image of the treatment target and/or the organ at risk and acquiring a second medical image of the treatment target and/or the organ at risk, wherein the time between the acquisition of the first medical image and the second medical image is similar to the radiotherapy fraction time interval and determining of positions of the first location and the second location in the first medical image and in the second medical image and using the determined positions for determining the patient specific locally varying margin around the treatment target and/or organ at risk.
摘要:
A system (100) and method are provided for determining an effective cross-sectional area of a tubular cardiovascular structure (400), which may be used in the assessment of blood flow through the tubular cardiovascular structure. Said determining comprises obtaining a three-dimensional Image'of the tubular cardiovascular structure, segmenting the image to obtain a segmentation of the lumen inside the tubular cardiovascular structure, and determining a centerline (430) of the tubular cardiovascular structure. Then, using the segmentation of the lumen, an apparent flow aperture of the tubular cardiovascular structure is determined in the direction of the centerline, e.g., by projecting the segmentation along the direction of the centerline and determining the area in the projection which is free of projected parts. In contrast to area planimetry, the apparent flow aperture does not overestimate the effective cross-sectional area of the tubular cardiovascular structure, and thus may be used to provide a better estimate of the effective cross-sectional area of said cardiovascular structure.
摘要:
A system (100) is provided for performing a model-based segmentation of an anatomical structure in a medical image. The system comprises a processor (140) configured for performing a model-based segmentation of the anatomical structure by applying a deformable model to image data (042). Moreover, definition data (220) is provided which defines a geometric relation between a first part and a second part of the deformable model of which a corresponding first part of the anatomical structure is presumed to be better visible in the image data than a corresponding second part of the anatomical structure. The definition data is then used to adjust a fit of the second part of the deformable model. As a result, a better fit of the second part of the deformable model to the second part of the anatomical structure is obtained despite said part being relatively poorly visible in the image data.
摘要:
The present invention relates to a method for segmenting MR Dixon image data. A processor and a computer program product are also disclosed for use in connection with the method. The invention finds application in the MR imaging field in general and more specifically may be used in the generation of an attenuation map to correct for attenuation by cortical bone during the reconstruction of PET images. In the method, a surface mesh is adapted to a region of interest by: for each mesh element in the surface mesh: selecting a water target position based on a water image feature response in the MR Dixon water image;selecting a fat target position based on a fat image feature response in the MR Dixon fat image; and displacing each mesh element from its current position to a new position based on both its water target position and its corresponding fat target position.