摘要:
In an ultra-wideband ("UWB") receiver, a received UWB signal is periodically digitized as a series of ternary samples. During a carrier acquisition mode of operation, the samples are continuously correlated with a predetermined preamble sequence to develop a correlation value. When the value exceeds a predetermined threshold, indicating that the preamble sequence is being received, estimates of the channel impulse response ("CIR") are developed. When a start-of-frame delimiter ("SFD") is detected, the best CIR estimate is provided to a channel matched filter ("CMF"). During a data recovery mode of operation, the CMF filters channel-injected noise from the sample stream. Both carrier phase errors and data timing errors are continuously detected and corrected during both the carrier acquisition and data recovery modes of operation. The phase of the carrier can be determined by accumulating the correlator output before it is rotated by the carrier correction. By comparing the carrier phases of two receivers separated by a known distance, d , the angle of incidence, Θ , of the signal can be determined.
摘要:
A method and apparatus are provided for calibrating a wireless access point comprising an array of multiple (m) antennas denoted Ai (i=1 . . . m), each antenna having a respective internal phase offset φi. The method comprises receiving a signal from at least one transmitter located at a substantially known bearing from the wireless access point. The method further comprises determining an estimated value for each internal phase offseti such that an angle of arrival (AoA) spectrum calculated for the received signal on the basis of said estimated values matches the known bearing, wherein said AoA spectrum is calculated by treating said multiple antennas as a phased array. A method and an apparatus are also provided for calibrating a wireless access point comprising first and second arrays of multiple antennas, each antenna array having a respective radio unit, and each antenna in an array having a respective internal phase offseti. The method comprises using an antenna in the first antenna array to act as a transmitter located at a known distance from each antenna in the second antenna array, such that a signal from said transmitter is received at each antenna in the second antenna array. A phase for the received signal at each antenna in the second antenna array is measured in the radio unit, while an expected phase for the received signal is calculated, for each antenna in the second antenna array, based on the known distance of that antenna from the transmitter. The internal phase offseti, for each antenna in the second antenna array can then be determined from the difference between the measured phase and the calculated phase for that antenna.
摘要:
Provided are methods, apparatuses, and computer program products for calibrating a direction-finding system in a handheld device. A method is provided, which comprises: displaying instructions for orienting a device such that an image of a calibration source through a camera of the device falls in a designated position on a screen of said device; receiving a signal from said calibration source via an antenna array of the device; calculating an orientation angle between said device and said calibration source based on said image of the calibration source; storing pairs of the signal and the orientation angle at various instances while moving or rotating the device to make the image of the calibration source move along a predefined trajectory displayed on the screen; and calibrating a direction-finding system in the device based on the stored pairs of the signal and the orientation angle.
摘要:
Systems and methods to mitigate instrument landing system (ILS) overflight interference are disclosed. An example method performing a first measurement of a position of an aircraft relative to a first location based on an instrument landing system, performing a second measurement of the position of the aircraft based on inertial measurements performed over a first time period occurring prior to the first measurement, performing a third measurement of the position of the aircraft based on inertial measurements performed over a second time period greater than the first time period and occurring prior to the first measurement, and generating guidance information based on a selected one of the first, second, or third measurements of the position of the aircraft.
摘要:
L'invention concerne un procédé de localisation de sources émettrices par exploitation du couplage mutuel d'un réseau antennaire de petite base et un système récepteur mono-voie à commutation lente mettant en oeuvre le procédé L'invention porte sur une solution de radiogoniométrie mono-voie adaptée à une commutation lente de la voie de réception sur les différents éléments antennaires du réseau d'antennes. L'invention permet de reconstituer une observation quasi-continue du signal d'entrée en exploitant les couplages et l'influence mutuelle entre éléments antennaires. L'invention permet ainsi de produire des estimateurs statistiques du signal observé sur des durées d'intégration longues afin d'améliorer significativement les performances des traitements de séparation de sources ou de détermination de la direction d'arrivée d'un signal.
摘要:
A system and method for geolocating an RF emitter disposed on or near the ground includes receiving a signal from the RF emitter at each antenna of an array of N non-collinear antennas, wherein N is an integer greater than 2; routing the signal received at each of the antennas to one of a bank of N corresponding receivers; downconverting the N received signals to N downconverted signals; digitizing the N downconverted signals to digitized signals on N corresponding channels; using a processor to determine phase and amplitude variations across the N channels and to determine a Direction Vector corresponding to the signal received from the RF emitter; using a 2-dimensional pre-determined calibration table to look up a best match to the Direction Vector to determine a Bearing Vector to the RF emitter; and transforming the Bearing Vector into locally level reference frame.