摘要:
An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal is provided, having: a receiving interface for receiving one or more frames, a coefficient generator, and a signal reconstructor. The coefficient generator is configured to determine one or more first audio signal coefficients, and one or more noise coefficients. Moreover, the coefficient generator is configured to generate one or more second audio signal coefficients, depending on the one or more first audio signal coefficients and depending on the one or more noise coefficients. The audio signal reconstructor is configured to reconstruct a first portion of the reconstructed audio signal depending on the one or more first audio signal coefficients and the audio signal reconstructor is configured to reconstruct a second portion of the reconstructed audio signal depending on the one or more second audio signal coefficients, if the current frame is not received by the receiving interface or if the current frame being received by the receiving interface is corrupted.
摘要:
An approach is described that obtains spectrum coefficients for a replacement frame of an audio signal. A tonal component of a spectrum of an audio signal is detected based on a peak that exists in the spectra of frames preceding a replacement frame. For the tonal component of the spectrum a spectrum coefficients for the peak and its surrounding in the spectrum of the replacement frame is predicted, and for the non-tonal component of the spectrum a non-predicted spectrum coefficient for the replacement frame or a corresponding spectrum coefficient of a frame preceding the replacement frame is used.
摘要:
An audio encoder for providing an encoded audio information on the basis of an input audio information has a bandwidth extension information provider configured to provide bandwidth extension information using a variable temporal resolution and a detector configured to detect an onset of a fricative or affricate. The audio encoder is configured to adjust a temporal resolution used by the bandwidth extension information provider such that bandwidth extension information is provided with an increased temporal resolution at least for a predetermined period of time before a time at which an onset of a fricative or affricate is detected and for a predetermined period of time following the time at which the onset of the fricative or affricate is detected. Alternatively or in addition, the bandwidth extension information is provided with an increased temporal resolution in response to a detection of an offset of a fricative or affricate. Audio encoders and methods use a corresponding concept.
摘要:
Apparatus for decoding an encoded audio signal comprising an encoded core signal (1), comprising: a core decoder (1400) for decoding the encoded core signal (1401) to obtain a decoded core signal; a tile generator (1404) for generating one or more spectral tiles having frequencies not included in the decoded core signal using a spectral portion of the decoded core signal; and a cross-over filter (1406) for spectrally cross-over filtering the decoded core signal and a first frequency tile having frequencies extending from a gap filling frequency (309) to an upper border frequency or for spectrally cross-over filtering a first frequency tile and a second frequency tile.
摘要:
Linear prediction based audio coding is improved by coding a spectrum composed of a plurality of spectral components using a probability distribution estimation determined for each of the plurality of spectral components from linear prediction coefficient information. In particular, the linear prediction coefficient information is available anyway. Accordingly, it may be used for determining the probability distribution estimation at both encoding and decoding side. The latter determination may be implemented in a computationally simple manner by using, for example, an appropriate parameterization for the probability distribution estimation at the plurality of spectral components. All together, the coding efficiency as provided by the entropy coding is compatible with probability distribution estimations as achieved using context selection, but its derivation is less complex. For example, the derivation may be purely analytically and/or does not require any information on attributes of neighboring spectral lines such as previously coded/decoded spectral values of neighboring spectral lines as is the case in spatial context selection.