Abstract:
The present invention relates to a coloured effect pigment, comprising a substrate made of aluminium or an aluminium alloy which is optionally coated with one or more passivation layers, and an aluminium-doped iron oxide layer.
Abstract:
The present invention relates to a process for preparing a coloured effect pigment, comprising: (i) coating aluminium-based substrate particles in an aqueous coating medium with at least one metal oxide layer, wherein the metal oxide is selected from a titanium oxide, an iron oxide, or any mixture thereof, (ii) providing a mixture of the coated aluminium-based substrate particles and a particulate inorganic non-metallic material in the aqueous coating medium by adding the particulate inorganic non-metallic material to the aqueous coating medium, and (iii) separating the mixture of the coated aluminium-based substrate particles and the particulate inorganic non-metallic material from the aqueous coating medium and subjecting the separated mixture to a thermal drying step so as to obtain a dry coloured effect pigment material.
Abstract:
The present invention relates to a process for preparing a coloured effect pigment, comprising the steps of (a) preparing in an aqueous coating medium at least one layer of a hydroxyl- containing metal oxide on a substrate, thereby obtaining in the aqueous coating medium a first coloured pigment material CPM1 comprising the substrate coated with the hydroxyl-containing metal oxide, wherein the substrate is made of aluminium or aluminium alloy which optionally comprises at least one passivating layer, and wherein the hydroxyl-containing metal oxide is a hydroxyl-containing iron oxide or a hydroxyl-containing titanium oxide or a mixture thereof, (b) providing the first coloured pigment material CPM1 in a liquid post-treatment medium comprising one or more high boiling organic liquids, and (c) heating the liquid post-treatment medium to a temperature of at least 90°C so as to convert the first coloured pigment material CPM1 to a second coloured pigment material CPM2.
Abstract:
The invention relates to luster pigments having a pronounced glitter effect based on aluminium platelets which are covered with iron oxide. Prior to coating, the average platelet size is from 8 - 30 µm, the average platelet thickness is from 300 to 600 nm and the ratio of the size to the thickness is 15 - 70.