摘要:
An example network device includes memory configured to store packet data and processor circuitry coupled to the memory. The processing circuitry is configured to determine that a first host device has moved from a first access network of an Ethernet virtual private network (EVPN) associated with the first PE router to a second access network of the EVPN, wherein the first host device is interested in receiving traffic of a first multicast group. The processing circuitry is configured to determine whether any other host device on the first access network of the network device is interested in receiving traffic of the first multicast group. Based on no other host device on the first access network of the network device being interested in receiving multicast traffic of the first multicast group, the processing circuitry is configured to delete state associated with the first multicast group.
摘要:
The techniques describe example network systems providing core-facing designated forwarder (DF) election to forward multicast traffic into an EVPN of a core network. For example, a first PE device of a plurality of PE devices participating in an EVPN comprises one or more processors operably coupled to a memory, wherein the one or more processors are configured to: determine that a first multicast traffic flow has started for the first PE device; in response, send a source-active (SA) route to indicate the first multicast traffic flow has started for the first PE device; receive, from a second PE device, a second SA route that indicates that a second multicast traffic flow has started for the second PE device; and perform an election of a core-facing DF from among the first PE device and second PE device, wherein the core-facing DF is configured to forward the multicast traffic into the EVPN.
摘要:
A device may store first information regarding a first pseudowire connection with a first device, wherein the first pseudowire connection provides access to an Ethernet virtual private network (EVPN) to communicate with a host device. The device may store second information regarding a second pseudowire connection with a second device, wherein the second pseudowire connection provides access to the EVPN to communicate with the host device. The device may receive a message that includes a configuration identifier and identify the configuration identifier. The device may change a first characteristic of the first pseudowire connection based on the configuration identifier. The device may change a second characteristic of the second pseudowire connection based on the configuration identifier. The device may receive data from the host device based on changing the first characteristic of the first pseudowire connection and changing the second characteristic of the second pseudowire connection.
摘要:
Techniques are described for multicast flow prioritization in protocol independent multicast (PIM) networks with multicast flow limits. According to the disclosed techniques, once a router has reached its multicast flow limit, the router may preempt an installed lower priority multicast flow with a newly requested higher priority multicast flow. For example, if a maximum number of multicast flows are installed on the router, then, upon receiving a PIM join for a higher priority flow as compared to the installed flows, the router replaces one of the installed lower priority flows with the received higher priority flow. Furthermore, according to the disclosed techniques, priority values for multicast flows are consistent across a PIM domain and each of the routers within the PIM domain is configured to use the priority values to select a higher priority flow over a lower priority flow.
摘要:
In some examples, a method includes receiving, by a first ingress network device for a network, a source tree join route message from an egress network device for the network, specifying a multicast source and a multicast group, and in response to receiving the source tree join route message, determining, by the ingress network device, whether the multicast source is multi-homed to the network via the first ingress network device and a second ingress network device for the network. The method includes, in response to determining that the multicast source is not multi-homed, forwarding traffic for the multicast source on an inclusive provider tunnel without initiating setup of a selective provider tunnel to the egress network device, and in response to determining that the multicast source is multi-homed, initiating setup of a selective provider tunnel to the egress network device and terminating forwarding multicast traffic on the inclusive provider tunnel.
摘要:
Techniques are described for enhancements to multicast Label Distribution Protocol (mLDP) to support multicast only fast re-route (MoFRR) over a remote loop free alternate (RLFA) backup path. An egress router is configured to generate a modified mLDP control message to signal the RLFA backup path in which an address of a RLFA node is included in an LSPRoot field and an address of an ingress router is included in an opaque data field. In addition, the RLFA node of the RLFA backup path is configured to recognize that it is identified in the LSPRoot field of the modified mLDP control message, and, in response, look up the ingress router identified in the opaque data field of the modified mLDP control message. The RLFA node is further configured to send an mLDP control message that includes the address of the ingress router in the LSPRoot field towards the ingress router.
摘要:
An example egress network device includes at least one computer processor and a memory. The memory includes instructions that cause the at least one computer processor to receive messages from each of a plurality of ingress network devices. Each message specifies a multicast source as an anycast address that belongs to two or more sources, a multicast group, and a customer site identifier that uniquely identifies a customer network device via which the anycast address is reachable. The instructions cause the at least one computer processor to select, based on the customer site identifiers, one of the plurality of ingress network devices to which to send a multicast join message of a plurality of multicast join messages for the multicast source and multicast group. The instructions cause the at least one computer processor to send the multicast join message to the selected one of the plurality of ingress network devices.
摘要:
A device may store first information regarding a first pseudowire connection with a first device, wherein the first pseudowire connection provides access to an Ethernet virtual private network (EVPN) to communicate with a host device. The device may store second information regarding a second pseudowire connection with a second device, wherein the second pseudowire connection provides access to the EVPN to communicate with the host device. The device may receive a message that includes a configuration identifier and identify the configuration identifier. The device may change a first characteristic of the first pseudowire connection based on the configuration identifier. The device may change a second characteristic of the second pseudowire connection based on the configuration identifier. The device may receive data from the host device based on changing the first characteristic of the first pseudowire connection and changing the second characteristic of the second pseudowire connection.
摘要:
Techniques are described for facilitating node protection for Broadcast, unknown Unicast, and Multicast (BUM) traffic for a multi-homed node failure. For example, multi-homed provider edge (PE) devices each advertise egress node protection labels to an ingress PE device. In the event one of the multi-homed PE devices fails, the ingress PE device sends a BUM packet including the egress node protection labels for the failed node. When an egress PE device receives the BUM packet, the egress PE device determines whether the BUM packet includes the egress node protection labels and whether the egress PE device is operating as a backup designated forwarder (DF) on an Ethernet segment identifier (ESI) for which the failed node was the DF. If the BUM packet includes the egress node protection labels and the egress PE device is operating as a backup DF, the egress PE device forwards the BUM traffic to the ESI.