摘要:
A hybrid imaging system includes a magnetic resonance scanner and a second modality imaging system disposed in the same radio frequency isolation space. The second modality imaging system includes radiation detectors configured to detect at least one of high energy particles and high energy photons. In some embodiments a retractable radio frequency screen is selectively extendible into a gap between the magnetic resonance scanner and the second modality imaging system. In some embodiments shim coils are disposed with the magnetic resonance scanner and are configured to compensate for distortion of the static magnetic field of the magnetic resonance scanner produced by proximity of the second modality imaging system.
摘要:
A hybrid imaging system and a patient bed (14) for same are disclosed. The hybrid imaging system includes a magnetic resonance scanner (10) and a second modality imaging system (12) spaced apart from the magnetic resonance scanner by a gap. In some embodiments, the gap is less than seven meters. The patient bed is disposed at least partially in the gap between the magnetic resonance scanner and the second modality imaging system, and includes a linearly translatable patient support pallet (22) aligned to be selectively moved into an examination region (24) of the magnetic resonance scanner for magnetic resonance imaging and into an examination region (26) of the second modality imaging system for second modality imaging. In some embodiments, a linear translation range of the linearly translatable pallet is less than five times a length of the patient support pallet along the direction of linear translation.
摘要:
A transverse magnetic field gradient coil includes a set of primary coil loops (62) defining an operative coil end (66) and a distal coil end (68). The set of primary coil loops are configured to generate a magnetic field gradient in a selected region asymmetrically disposed relatively closer to the operative coil end and relatively further from the distal coil end. A set of shield coil loops (64) are disposed outside the set of primary coil loops and are configured to substantially shield the set of primary coil loops. Two or more current jumps (70) are disposed at the distal end. Each current jump electrically connects an incomplete loop of the set of primary coil loops with an incomplete loop of the set of shield coil loops.
摘要:
Hybrid circuitry (40, 40′, 40″) for operatively coupling a radio frequency drive signal (70) with a quadrature coil (30) is configurable in one of at least two coil modes of a group consisting of: (i) a linear I channel mode in which an I channel input port (42) is driven without driving a Q channel input port (44); (ii) a linear Q channel mode in which the Q channel input port is driven without driving the I channel input port; (iii) a quadrature mode in which both the I and Q channel input ports are driven with a selected positive phase difference; and (iv) an anti quadrature mode in which both the I and Q channel input ports are driven with a selected negative phase difference. A temporal sequence of the at least two coil modes may be determined and employed to compensate for B1 inhomogeneity.
摘要:
In a magnetic resonance scanner, a main magnet (20, 22) generates a static magnetic field at least in an examination region. A magnetic field gradient system (30, 54) selectively superimposes magnetic field gradients on the static magnetic field at least in the examination region. A magnetic resonance excitation system (36, 36') includes at least one radio frequency coil (30, 301, 302, 303) arranged to inject radio frequency B1 fields into the examination region and at least two radio frequency amplifiers (38, 40, 40') coupled with different input ports of the at least one radio frequency coil. A controller (66, 70) controls the magnetic resonance excitation system to produce a time varying spatial B1 field distribution in a subject (16) in the examination region that time integrates to define a spatial tip angle distribution in the subject having reduced spatial non uniformity.
摘要:
A radio frequency coil for magnetic resonance imaging or spectroscopy includes a plurality of generally parallel conductive members (70) surrounding a region of interest (14). One or more end members (72, 74) are disposed generally transverse to the plurality of parallel conductive members. A generally cylindrical radio frequency shield (32) surrounds the plurality of generally parallel conductive members. Switchable circuitry (80, 80') selectably has: (i) a first switched configuration (90, 90') in which the conductive members are operatively connected with the one or more end members; and (ii) a second switched configuration (92, 92') in which the conductive members are operatively connected with the radio frequency shield. The radio frequency coil operates in a birdcage resonance mode in the first switched configuration and operates in a TEM resonance mode in the second switched configuration.
摘要:
In a magnetic resonance imaging system (10), a main magnet (20) generates a substantially uniform main magnetic field (Bo) through an examination region (14). An imaging subject (16) generates inhomogeneities in the main magnetic field (Bo). One or more shim coils are positioned adjacent a gradient coil (26). The gradient coil (26) is driven in halves by first and second power sources (28, 30) which have slightly dissimilar power characteristics which induce an inductive coupling between the shim coil (60) and the gradient coil (26). The shim coil (60) is designed to produce a desired magnetic field, such that the inductive coupling of the shim coils (60) to the gradient coil (26) is substantially minimized while the inhomogeneities in the main magnetic field (Bo) caused by the imaging subject are corrected based on prespecified spatial characteristics.
摘要:
A radio frequency coil system (38) for magnetic resonance imaging includes a plurality of parallel spaced apart rungs (60) which each includes rung capacitors (68). An end cap (64) is disposed at a closed end (66) of the coil system (38). An RF shield (62) is connected to the end cap (64) and surrounds the rungs (60), extending in a direction substantially parallel to rungs (60). The RF coil system (38) may be used as birdcage, TEM, hybrid, combination birdcage and TEM, or other.
摘要:
A gradient coil for a magnetic resonance imaging apparatus (10) includes a primary coil (16) defining an inner cylindrical surface (60), and shield coil (18) or coils defining a coaxial outer cylindrical surface (62). Coil jumps (74) connect the primary and shield coils (16, 18). The coil jumps (74) define a non-planar current-sharing surface (64) extending between inner and outer contours (66, 68) that coincide with the inner and outer cylindrical surfaces (60, 62), respectively. The coil (16, 18, 74) defines a current path that passes across the current sharing surface (64) between the inner and outer contours (66, 68) a plurality of times. Optionally, some primary coil turns (70) are electrically interconnected to define an isolated primary sub coil (P2) that together with a second shield (S2, S2', S2'') enables a discretely or continuously selectable field of view.