摘要:
A method of performing transmission from an access point (AP) in a wireless communication system provides transmission setting adjustment after sounding. In this method, stations associated with the AP and having transmission data can be identified. Transmission to those stations can be performed using a predetermined transmission setting. For a first transmission after a sounding, the predetermined transmission setting can be boosted. For any transmission other than the first transmission after the sounding, a current or adjusted transmission setting can be used based on a detected PER during transmission. An adjusted transmission setting can be an MCS rate, a user-level (SU-BF, 2U-MIMO, or 3U-MIMO), or an aggregated MAC protocol data unit (AMPDU) aggregation level. A single transmission setting or a combination of settings can be used. The method can be used with any transmission setting(s), including those mapped from the Signal to Interference and Noise Ratio (SINR).
摘要:
One feature provides a method for a client node to establish a session key with a group node by obtaining an epoch identity value associated with a current epoch, wherein obtaining the epoch identity value includes one of computing the epoch identity value based on a node real time or negotiating the epoch identity value with the group node, computing a restricted key using a shared secret key, the epoch identity value, and a group node identity associated with the group node, and executing a session key establishment protocol with the group node to derive the session key using the restricted key as a master key in the session key establishment protocol. The session key may be established between the group node and the client node even though communications between the group node and the central node is only intermittently available during the current epoch.
摘要:
Disclosed is a method for address privacy protection for a first wireless device sharing a privacy key with a second wireless device. In the method, a first resolution tag is generated at the first wireless device using a pseudo-random function with the seed value and the privacy key as input arguments. The privacy key is only known to the first and second wireless devices. A privacy address is generated for the first wireless device based on the seed value and the first resolution tag. A packet is transmitted from the first wireless device to the second wireless device. The packet includes the privacy address and the first resolution tag.
摘要:
A system and method for media access control are disclosed. The method comprises providing concurrent orthogonal channels to access media using pulse division multiple access to define pulse positions, wherein the pulse division multiple access includes a time hopping sequence and an offset to distinguish the concurrent orthogonal channels. In addition, the method comprises processing signals associated with at least one of the orthogonal channels.
摘要:
Relatively short turnaround times are provided in conjunction with two-way ranging to, for example, facilitate accurate ranging measurements when the relative clock drift between ranging nodes (e.g., devices) is relatively high. In some aspects, relatively short turnaround times are achieved through the use of a symmetric channel that is defined to enable concurrent transmission of ranging messages between nodes. For example, a symmetric channel may be established by configuring the nodes to receive one or more pulses associated with a received ranging message in between pulse transmissions associated with a transmitted ranging message. In this way, one node may send a ranging timestamp shortly after the other nodes sends its ranging timestamp, thereby mitigating the impact of the clock drift on the ranging measurements. In some aspects the pulses may comprise ultra-wideband pulses. The techniques described herein may be employed to provide two-way ranging in, for example, low power and/or non-coherent wireless devices.
摘要:
A channel access scheme is provided for a pulse-based ultra-wide band network. Here, concurrent ultra-wide band channels may be established through the use of a pulse division multiple access scheme. An access scheme may employ different states each of which may be associated with different channel parameter state information and/or different duty cycles. For example, a channel access scheme may employ an inactive state, an idle state, a connected state, and a streaming state. Multiple logical channels may be defined for a given ultra-wide band channel via, for example, pulse division multiplexing.
摘要:
Low power wireless communication techniques may be employed in devices that communicate via a wireless body area network, a wireless personal area network, or some other type of wireless communication link. In some implementations the devices may communicate via one or more impulse-based ultra-wideband channels. Inter-pulse duty cycling may be employed to reduce the power consumption of a device. Power may be provided for the transmissions and receptions of pulses by charging and discharging a capacitive element according to the inter-pulse duty cycling. Sub-packet data may be transmitted and received via a common frequency band. A cell phone may multicast to two or more peripherals via wireless communication links.