-
公开(公告)号:EP3690744A1
公开(公告)日:2020-08-05
申请号:EP20153291.8
申请日:2020-01-23
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for integrating images from vehicles performing a cooperative driving is provided. The method includes steps of: a main driving image integrating device on one main vehicle (a) inputting one main driving image into a main object detector to (1) generate one main feature map by applying convolution operation via a main convolutional layer, (2) generate main ROIs via a main region proposal network, (3) generate main pooled feature maps by applying pooling operation via a main pooling layer, and (4) generate main object detection information on the main objects by applying fully-connected operation via a main fully connected layer; (b) inputting the main pooled feature maps into a main confidence network to generate main confidences; and (c) acquiring sub-object detection information and sub-confidences from sub-vehicles, and integrating the main object detection information and the sub-object detection information using the main & the sub-confidences to generate object detection result.
-
公开(公告)号:EP3690737A1
公开(公告)日:2020-08-05
申请号:EP20151442.9
申请日:2020-01-13
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Insu , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , YEO, Donghun , RYU, Wooju , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for learning transformation of an annotated RGB image into an annotated Non-RGB image, in target color space, by using a cycle GAN and for domain adaptation capable of reducing annotation cost and optimizing customer requirements is provided. The method includes steps of: a learning device transforming a first image in an RGB format to a second image in a non-RGB format, determining whether the second image has a primary or a secondary non-RGB format, and transforming the second image to a third image in the RGB format; transforming a fourth image in the non-RGB format to a fifth image in the RGB format, determining whether the fifth image has a primary RGB format or a secondary RGB format, and transforming the fifth image to a sixth image in the non-RGB format. Further, by the method, training data can be generated even with virtual driving environments.
-
23.
公开(公告)号:EP3690728A1
公开(公告)日:2020-08-05
申请号:EP20153295.9
申请日:2020-01-23
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
IPC分类号: G06K9/00
摘要: A method for learning an automatic parking device of a vehicle for detecting an available parking area is provided. The method includes steps of: a learning device, (a) if a parking lot image of an area nearby the vehicle is acquired, (i) inputting the parking lot image into a segmentation network to output a convolution feature map via an encoder, output a deconvolution feature map by deconvoluting the convolution feature map via a decoder, and output segmentation information by masking the deconvolution feature map via a masking layer; (b) inputting the deconvolution feature map into a regressor to generate relative coordinates of vertices of a specific available parking region, and generate regression location information by regressing the relative coordinates; and (c) instructing a loss layer to calculate 1-st losses by referring to the regression location information and an ROI GT, and learning the regressor via backpropagation using the 1-st losses.
-
公开(公告)号:EP3690727A1
公开(公告)日:2020-08-05
申请号:EP20153075.5
申请日:2020-01-22
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for training a CNN by using a camera and a radar together, to thereby allow the CNN to perform properly even when an object depiction ratio of a photographed image acquired through the camera is low due to a bad condition of a photographing circumstance is provided. And the method includes steps of: (a) a learning device instructing a convolutional layer to apply a convolutional operation to a multichannel integrated image, to thereby generate a feature map; (b) the learning device instructing an output layer to apply an output operation to the feature map, to thereby generate estimated object information; and (c) the learning device instructing a loss layer to generate a loss by using the estimated object information and GT object information corresponding thereto, and to perform backpropagation by using the loss, to thereby learn at least part of parameters in the CNN.
-
公开(公告)号:EP3690710A1
公开(公告)日:2020-08-05
申请号:EP20151661.4
申请日:2020-01-14
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
IPC分类号: G06K9/00
摘要: A method for updating an object detecting system to detect objects with untrained classes in real-time is provided. The method includes steps of: (a) the object detecting system, if at least one input image is acquired, instructing a recognizer included therein to generate a specific feature map, and to generate a specific query vector; (b) the object detecting system instructing a similarity determining unit (i) to compare the specific query vector to data vectors, to thereby calculate each of first similarity scores between the specific query vector and each of the data vectors, and (ii) to add a specific partial image to an unknown image DB, if a specific first similarity score is smaller than a first threshold value; (c) the object detecting system, if specific class information is acquired, instructing a short-term update unit to generate a specific short-term update vector, and update the feature fingerprint DB.
-
公开(公告)号:EP3690709A1
公开(公告)日:2020-08-05
申请号:EP20151660.6
申请日:2020-01-14
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for learning a recurrent neural network to check an autonomous driving safety to be used for switching a driving mode of an autonomous vehicle is provided. The method includes steps of: a learning device (a) if training images corresponding to a front and a rear cameras of the autonomous vehicle are acquired, inputting each pair of the training images into corresponding CNNs, to concatenate the training images and generate feature maps for training, (b) inputting the feature maps for training into long short-term memory models corresponding to sequences of a forward RNN, and into those corresponding to the sequences of a backward RNN, to generate updated feature maps for training and inputting feature vectors for training into an attention layer, to generate an autonomous-driving mode value for training, and (c) allowing a loss layer to calculate losses and to learn the long short-term memory models.
-
公开(公告)号:EP3690705A1
公开(公告)日:2020-08-05
申请号:EP20150698.7
申请日:2020-01-08
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Insu , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , YEO, Donghun , RYU, Wooju , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for generating a deceivable composite image by using a GAN (Generative Adversarial Network) including a generating and a discriminating neural network to allow a surveillance system to recognize surroundings and detect a rare event, such as hazardous situations, more accurately by using a heterogeneous sensor fusion is provided. The method includes steps of: a computing device, generating location candidates of a rare object on a background image, and selecting a specific location candidate among the location candidates as an optimal location of the rare object by referring to candidate scores; inserting a rare object image into the optimal location, generating an initial composite image; and adjusting color values corresponding to each of pixels in the initial composite image, generating the deceivable composite image. Further, the method may be applicable to a pedestrian assistant system and a route planning by using 3D maps, GPS, smartphones, V2X communications, etc.
-
28.
公开(公告)号:EP3690400A1
公开(公告)日:2020-08-05
申请号:EP20152190.3
申请日:2020-01-16
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for calculating exact location of a subject vehicle by using information on relative distances is provided. And the method includes steps of: (a) a computing device, if a reference image is acquired through a camera on the subject vehicle, detecting reference objects in the reference image; (b) the computing device calculating image-based reference distances between the reference objects and the subject vehicle, by referring to information on reference bounding boxes, corresponding to the reference objects, on the reference image; (c) the computing device (i) generating a distance error value by referring to the image-based reference distances and coordinate-based reference distances, and (ii) calibrating subject location information of the subject vehicle by referring to the distance error value.
-
29.
公开(公告)号:EP3690397A1
公开(公告)日:2020-08-05
申请号:EP20152584.7
申请日:2020-01-20
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Hak-Kyoung , NAM, Woonhyun , Boo, SukHoon , SUNG, Myungchul , SHIN, Dongsoo , YEO, Donghun , RYU, Wooju , LEE, Myeong-Chun , LEE, Hyungsoo , JANG, Taewoong , JEONG, Kyungjoong , JE, Hongmo , CHO, Hojin
摘要: A method for detecting a location of a subject vehicle capable of an autonomous driving by using a landmark detection. And the method includes steps of: (a) a computing device, if a live feature map is acquired, detecting each of feature map coordinates on the live feature map per each of reference objects included in a subject data region corresponding to a location and a posture of the subject vehicle, by referring to (i) reference feature maps corresponding to the reference objects, and (ii) the live feature map; (b) the computing device detecting image coordinates of the reference objects on a live image by referring to the feature map coordinates; and (c) the computing device detecting an optimized subject coordinate of the subject vehicle by referring to 3-dimensional coordinates of the reference objects in a real world.
-
30.
公开(公告)号:EP3690396A1
公开(公告)日:2020-08-05
申请号:EP20150873.6
申请日:2020-01-09
申请人: StradVision, Inc.
发明人: KIM, Kye-Hyeon , KIM, Yongjoong , KIM, Insu , KIM, Hak-Kyoung , NAM, Woonhyun , BOO, SukHoon , SUNG, Myungchul , YEO, Donghun , RYU, Wooju , JANG, Taewoong , Jeong, Kyungjoong , JE, Hongmo , CHO, Hojin
IPC分类号: G01C21/20
摘要: A method for providing an Advanced Pedestrian Assistance System to protect a pedestrian preoccupied with a smartphone is provided. The method includes steps of: the smartphone instructing a locating unit to acquire 1-st information including location and velocity information of the pedestrian and location and velocity information of the smartphone; instructing a detecting unit to acquire 2-nd information including hazard statuses of hazardous areas near the pedestrian and location information and velocity information of hazardous objects, by referring to images acquired by phone cameras linked with the smartphone and the 1-st information; and instructing a control unit to calculate a degree of pedestrian safety of the pedestrian by referring to the 1-st and the 2-nd information, and to transmit a hazard alert to the pedestrian via the smartphone. Further, the method can be used for surveillance or a military purpose.
-
-
-
-
-
-
-
-
-