摘要:
Systems and methodologies are described that facilitate guard bandwidth independent mapping and de-mapping of bandwidth in a wireless communication system. Broadcast signals can be created as if all bandwidth were available, and guard bandwidth can be initialized over the utilized bandwidth such to puncture the data existing in the guard bandwidth. Upon decoding the broadcast signal, size of the guard bandwidth can be predetermined or estimated allowing a center portion of the signal to be decoded without decoding the guard bandwidth. In this regard, the decoder of the signal need not find exact positions of the guard bandwidth as transforming and decoding the center portion can provide a substantial portion of the signal to interpret the signal.
摘要:
Method and apparatus for transmitting a wireless communication signal frame, such as an OFDM superframe. In particular, the disclosed methods and apparatus transmit a first pilot symbol in the signal frame where the symbol serves to communicate coarse timing information to a receiver. A second pilot symbol is subsequently transmitted to communicate information including network identification information concerning a wide-area network. Next, overhead information (OIS) concerning the wide-area network is then transmitted and then a third pilot symbol is transmitted to communicate information including network identification information concerning a local-area network to a receiver. By transmitting the third pilot symbol concerning the local-area network after the wide-area OIS, a receiver is allowed to acquire wide-area network timing and information and then subsequently acquire more updated local-area network timing and information and more efficiently utilize processing resources.
摘要:
Superframe preamble structures for wireless communication systems are provided. The preamble can include system determination information, which can improve acquisition performance. The superframe structures can allow efficient determination of flexible parameters that determine preamble structure. The superframe structures can also facilitate quick paging capacity to scale with bandwidth.
摘要:
Apparatus and methods for estimating the frequency of a sleep or slow clock by selectively utilizing an estimated sleep clock frequency and an estimated change in the sleep clock frequency. The disclosed apparatus includes a sleep clock frequency estimator to output a fast clock derived sleep clock frequency estimate and a sleep clock change frequency estimator to output an estimate of a change in frequency of the sleep clock. The apparatus further includes a combiner that weights at least one of the fast clock derived sleep clock frequency estimate to obtain a weighted sleep clock frequency estimate and the estimate of the change in frequency of the sleep clock to obtain a weighted estimate of the change in frequency of the sleep clock. The combiner also determines a new estimate of the sleep clock frequency using at least one of the weighted sleep clock frequency estimate and the weighted estimate of the change in frequency of the sleep clock. Complementary methods are also disclosed.
摘要:
The embodiments utilize OFDM symbols to communicate network IDs. The IDs are encoded into symbols utilizing the network IDs as seeds to scramble respective pilots that are then transmitted by utilizing the symbols. The pilots can be structured into a single OFDM symbol and/or multiple OFDM symbols. The single symbol structure for transmitting the network IDs is independent of the number of network ID bits and minimizes frequency offset and Doppler effects. The multiple symbol structure allows a much coarser timing accuracy to be employed at the expense of transmitting additional symbols. Several embodiments employ a search function to find possible network ID candidates from a transmitted symbol and a selection function to find an optimum candidate from a network ID candidate list.
摘要:
The subject invention selects a starting sub-carrier frequency group for a pilot staggering sequence to facilitate in mitigating the possibility of pilot signal collisions. In one embodiment, a randomized starting sub-carrier frequency group of the pilot is utilized in a first orthogonal frequency division multiplexing (OFDM) symbol of a frame. In another embodiment, a starting pilot sub-carrier frequency group number is determined by utilizing a random number generator such as, for example, a Pseudo-Noise (PN) sequence generator, seeded by a network identification (ID) number. In this manner, the starting sub-carrier frequency group is specific to that particular network. The subject invention also provides a more scalable system through the trading of system bandwidth for coverage.
摘要:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may determine separate uplink (UL) power limitations for multiple transmission time interval (TTI) durations based on distinct power control parameters. In some cases, an adjustment factor or a power backoff may be applied to communications using one TTI duration to ensure that total transmit power does not exceed a threshold. The UE and the serving base station may also identify one or more demodulation reference signal (DMRS) windows. UL data transmissions may be demodulated based on a DMRS sent during the same window. Transmit power control (TPC) commands may be applied at the beginning of each window. However, if an UL transmission is scheduled at the beginning of the window, the UE may wait until a DMRS transmission or until no more transmissions are scheduled for the window before applying the TPC adjustment.